6,694 research outputs found
Prompt Gamma Activation Analysis (PGAA): Technique of choice for nondestructive bulk analysis of returned comet samples
Prompt gamma activation analysis (PGAA) is a well-developed analytical technique. The technique involves irradiation of samples in an external neutron beam from a nuclear reactor, with simultaneous counting of gamma rays produced in the sample by neutron capture. Capture of neutrons leads to excited nuclei which decay immediately with the emission of energetic gamma rays to the ground state. PGAA has several advantages over other techniques for the analysis of cometary materials: (1) It is nondestructive; (2) It can be used to determine abundances of a wide variety of elements, including most major and minor elements (Na, Mg, Al, Si, P, K, Ca, Ti, Cr, Mn, Fe, Co, Ni), volatiles (H, C, N, F, Cl, S), and some trace elements (those with high neutron capture cross sections, including B, Cd, Nd, Sm, and Gd); and (3) It is a true bulk analysis technique. Recent developments should improve the technique's sensitivity and accuracy considerably
Microprobe studies of microtomed particles of white druse salts in shergottite EETA 79001
The white druse material in Antarctic shergottite EETA 79001 has attracted much attention as a possible sample fo Martian aqueous deposits. Instrumental Neutron Activation Analysis (INAA) was used to determine trace element analyses of small particles of this material obtained by handpicking of likely grains from broken surfaces of the meteorite. Electron microprobe work was attempted on grain areas as large as 150x120 microns. Backscattered electron images show considerable variations in brightness, and botryoidal structures were observed. Microprobe analyses showed considerable variability both within single particles and between different particles. Microtomed surfaces of small selected particles were shown to be very useful in obtaining information on the texture and composition of rare lithologies like the white druse of EETA 79001. This material is clearly heterogeneous on all distance scales, so a large number of further analyses will be required to characterize it
Bayesian salamanders: analysing the demography of an underground population of the European plethodontid <i>Speleomantes strinatii</i> with state-space modelling
<b>Background</b>: It has been suggested that Plethodontid salamanders are excellent candidates for indicating ecosystem health. However, detailed, long-term data sets of their populations are rare, limiting our understanding of the demographic processes underlying their population fluctuations. Here we present a demographic analysis based on a 1996 - 2008 data set on an underground population of Speleomantes strinatii (Aellen) in NW Italy. We utilised a Bayesian state-space approach allowing us to parameterise a stage-structured Lefkovitch model. We used all the available population data from annual temporary removal experiments to provide us with the baseline data on the numbers of juveniles, subadults and adult males and females present at any given time.
<b>Results</b>: Sampling the posterior chains of the converged state-space model gives us the likelihood distributions of the state-specific demographic rates and the associated uncertainty of these estimates. Analysing the resulting parameterised Lefkovitch matrices shows that the population growth is very close to 1, and that at population equilibrium we expect half of the individuals present to be adults of reproductive age which is what we also observe in the data. Elasticity analysis shows that adult survival is the key determinant for population growth.
<b>Conclusion</b>: This analysis demonstrates how an understanding of population demography can be gained from structured population data even in a case where following marked individuals over their whole lifespan is not practical
Discretization of the Superparticle Path Integral
Requiring that the path integral has the global symmetries of the classical
action and obeys the natural composition property of path integrals, and also
that the discretized action has the correct naive continuum limit, we find a
viable discretization of the (D=3,N=2) superparticle action.Comment: 10 page
Electrolysis of simulated lunar melts
Electrolysis of molten lunar soil or rock is examined as an attractive means of wresting useful raw materials from lunar rocks. It requires only hat to melt the soil or rock and electricity to electrolyze it, and both can be developed from solar power. The conductivities of the simple silicate diopside, Mg CaSi2O6 were measured. Iron oxide was added to determine the effect on conductivity. The iron brought about substantial electronic conduction. The conductivities of simulated lunar lavas were measured. The simulated basalt had an AC conductivity nearly a fctor of two higher than that of diopside, reflecting the basalt's slightly higher total concentration of the 2+ ions Ca, Mg, and Fe that are the dominant charge carriers. Electrolysis was shown to be about 30% efficient for the basalt composition
Watching the Blue Planet from Space over Recent Decades: What's up for Science and Society?
Since the first photographs of Earth Rise taken by the Apollo astronauts in the 1960s galvanized the environmental movement, imaging of our planet from low Earth orbit has grown more sophisticated and diverse. Satellite and astronaut observations and imagery of the changing ocean still have the power to galvanize oceanographers and society. So what are some of the key ideas for oceanography and society that come out of out recent decades of ocean observation from space? Satellite oceanography has made fundamental contributions to our understanding and estimation of changing sea level, winds and storminess over the oceans, primary productivity of the seas, the role of the ocean in the water cycle, and the changes in the ocean known as ocean acidification. Some of these phenomena interact in complex ways and Mother Nature hides the future well. However, some things are clear. Sea level rise has been monitored from space for more than 20 years and now we have a more nuanced understanding of regional variation in sea level rise and the contributions of ocean thermal expansion and the melting of glaciers and ice sheets. Wind vectors at the ocean surface have been measured for more than 2 decades and provide evidence for shifts in wind patterns that help, for example, explain some of the regional variations in sea level rise. Chlorophyll-a has been estimated in a multi-decadal record of observations and is being used to describe the shifts and trends in ocean primary productivity. Sea surface temperature estimation from space has records going back to the 1970s and provides critical information for the interaction of the ocean with the atmosphere. Sea surface salinity has been measured from space only within the last decade and provides a novel new view of regional, seasonal, and inter-annual changes in the ocean related to precipitation, river run-off, and eddy transport. Potential changes in the Earths water cycle have a huge societal impact
Geochemistry of HASP, VLT, and other glasses from double drive tube 79001/2
The Apollo 17 double drive tube 79001/2 (station 9, Van Serg Crater) is distinctive because of its extreme maturity, abundance, and variety of glass clasts. It contains mare glasses of both high Ti and very low Ti (VLT) compositions, and highland glasses of all compositions common in lunar regolith samples: highland basalt (feldspathic; Al2O3 greater than 23 wt percent), KREEP (Al2O3 less than 23 wt percent, K2O greater than 0.25 wt percent), and low-K Fra Mauro (LKFM; Al2O3 less than 23 wt percent, K2O less than 0.25 wt percent). It also contains rare specimens of high-alumina, silica-poor (HASP), and ultra Mg glasses. HASP glasses contain insufficient SiO2 to permit the calculation of a standard norm, and are thought to be the product of volatilization during impact melting. They have been studied by electron microprobe major-element analysis techniques but have not previously been analyzed for trace elements. The samples analyzed for this study were polished grain mounts of the 90-160 micron fraction of four sieved samples from the 79001/2 core (depth range 2.3-11.5 cm). A total of 80 glasses were analyzed by SEM/EDS and electron microprobe, and a subset of 33 of the glasses, representing a wide range of compositional types, was chosen for high-sensitivity INAA. A microdrilling device removed disks (mostly 50-100 micron diameter, weighing approx. 0.1-0.5 micro-g) for INAA. Preliminary data reported here are based only on short counts done within two weeks of irradiation
On the properties of superconducting planar resonators at mK temperatures
Planar superconducting resonators are now being increasingly used at mK
temperatures in a number of novel applications. They are also interesting
devices in their own right since they allow us to probe the properties of both
the superconductor and its environment. We have experimentally investigated
three types of niobium resonators - including a lumped element design -
fabricated on sapphire and SiO_2/Si substrates. They all exhibit a non-trivial
temperature dependence of their centre frequency and quality factor. Our
results shed new light on the interaction between the electromagnetic waves in
the resonator and two-level fluctuators in the substrate.Comment: V2 includes some minor corrections/changes. Submitted to PR
Magnetic field tuning of coplanar waveguide resonators
We describe measurements on microwave coplanar resonators designed for
quantum bit experiments. Resonators have been patterned onto sapphire and
silicon substrates, and quality factors in excess of a million have been
observed. The resonant frequency shows a high sensitivity to magnetic field
applied perpendicular to the plane of the film, with a quadratic dependence for
the fundamental, second and third harmonics. Frequency shift of hundreds of
linewidths can be obtained.Comment: Accepted for publication in AP
Technology Development and Advanced Planning for Curation of Returned Mars Samples
NASA Johnson Space Center (JSC) curates extraterrestrial samples, providing the international science community with lunar rock and soil returned by the Apollo astronauts, meteorites collected in Antarctica, cosmic dust collected in the stratosphere, and hardware exposed to the space environment. Curation comprises initial characterization of new samples, preparation and allocation of samples for research, and clean, secure long-term storage. The foundations of this effort are the specialized cleanrooms (class 10 to 10,000) for each of the four types of materials, the supporting facilities, and the people, many of whom have been doing detailed work in clean environments for decades. JSC is also preparing to curate the next generation of extraterrestrial samples. These include samples collected from the solar wind, a comet, and an asteroid. Early planning and R\&D are underway to support post-mission sample handling and curation of samples returned from Mars. One of the strong scientific reasons for returning samples from Mars is to search for evidence of current or past life in the samples. Because of the remote possibility that the samples may contain life forms that are hazardous to the terrestrial biosphere, the National Research Council has recommended that all samples returned from Mars be kept under strict biological containment until tests show that they can safely be released to other laboratories. It is possible that Mars samples may contain only scarce or subtle traces of life or prebiotic chemistry that could readily be overwhelmed by terrestrial contamination . Thus, the facilities used to contain, process, and analyze samples from Mars must have a combination of high-level biocontainment and organic / inorganic chemical cleanliness that is unprecedented. JSC has been conducting feasibility studies and developing designs for a sample receiving facility that would offer biocontainment at least the equivalent of current maximum containment BSL-4 (BioSafety Level 4) laboratories, while simultaneously maintaining cleanliness levels equaling those of state-of-the-art cleanrooms. Unique requirements for the processing of Mars samples have inspired a program to develop handling techniques that are much more precise and reliable than the approach (currently used for lunar samples) of employing gloved human hands in nitrogen-filled gloveboxes. Individual samples from Mars are expected to be much smaller than lunar samples, the total mass of samples returned by each mission being 0.5- 1 kg, compared with many tens of kg of lunar samples returned by each of the six Apollo missions. Smaller samples require much more of the processing to be done under microscopic observation. In addition, the requirements for cleanliness and high-level containment would be difficult to satisfy while using traditional gloveboxes. JSC has constructed a laboratory to test concepts and technologies important to future sample curation. The Advanced Curation Laboratory includes a new-generation glovebox equipped with a robotic arm to evaluate the usability of robotic and teleoperated systems to perform curatorial tasks. The laboratory also contains equipment for precision cleaning and the measurement of trace organic contamination
- …
