619,778 research outputs found

    Roll waves in mud

    Get PDF
    The stability of a viscoplastic fluid film falling down an inclined plane is explored, with the aim of determining the critical Reynolds number for the onset of roll waves. The Herschel–Bulkley constitutive law is adopted and the fluid is assumed two-dimensional and incompressible. The linear stability problem is described for an equilibrium in the form of a uniform sheet flow, when perturbed by introducing an infinitesimal stress perturbation. This flow is stable for very high Reynolds numbers because the rigid plug riding atop the fluid layer cannot be deformed and the free surface remains flat. If the flow is perturbed by allowing arbitrarily small strain rates, on the other hand, the plug is immediately replaced by a weakly yielded ‘pseudo-plug’ that can deform and reshape the free surface. This situation is modelled by lubrication theory at zero Reynolds number, and it is shown how the fluid exhibits free-surface instabilities at order-one Reynolds numbers. Simpler models based on vertical averages of the fluid equations are evaluated, and one particular model is identified that correctly predicts the onset of instability. That model is used to describe nonlinear roll waves

    High-order harmonic generation from diatomic molecules with large internuclear distance: The effect of two-center interference

    Full text link
    In the present paper, we investigate the high-order harmonic generation (HHG) from diatomic molecules with large internuclear distance using a strong field approximation (SFA) model. We find that the hump and dip structure emerges in the plateau region of the harmonic spectrum, and the location of this striking structure is sensitive to the laser intensity. Our model analysis reveals that two-center interference as well as the interference between different recombination electron trajectories are responsible for the unusual enhanced or suppressed harmonic yield at a certain order, and these interference effects are greatly influenced by the laser parameters such as intensity.Comment: 5 pages,4 figure

    Improved Chebyshev series ephemeris generation capability of GTDS

    Get PDF
    An improved implementation of the Chebyshev ephemeris generation capability in the operational version of the Goddard Trajectory Determination System (GTDS) is described. Preliminary results of an evaluation of this orbit propagation method for three satellites of widely different orbit eccentricities are also discussed in terms of accuracy and computing efficiency with respect to the Cowell integration method. An empirical formula is deduced for determining an optimal fitting span which would give reasonable accuracy in the ephemeris with a reasonable consumption of computing resources

    Synchronization of coupled neutral-type neural networks with jumping-mode-dependent discrete and unbounded distributed delays

    Get PDF
    This is the post-print version of the Article. The official published version can be accessed from the links below - Copyright @ 2013 IEEE.In this paper, the synchronization problem is studied for an array of N identical delayed neutral-type neural networks with Markovian jumping parameters. The coupled networks involve both the mode-dependent discrete-time delays and the mode-dependent unbounded distributed time delays. All the network parameters including the coupling matrix are also dependent on the Markovian jumping mode. By introducing novel Lyapunov-Krasovskii functionals and using some analytical techniques, sufficient conditions are derived to guarantee that the coupled networks are asymptotically synchronized in mean square. The derived sufficient conditions are closely related with the discrete-time delays, the distributed time delays, the mode transition probability, and the coupling structure of the networks. The obtained criteria are given in terms of matrix inequalities that can be efficiently solved by employing the semidefinite program method. Numerical simulations are presented to further demonstrate the effectiveness of the proposed approach.This work was supported in part by the Royal Society of the U.K., the National Natural Science Foundation of China under Grants 61074129, 61174136 and 61134009, and the Natural Science Foundation of Jiangsu Province of China under Grants BK2010313 and BK2011598

    A Numerical Study of Improved Quark Actions on Anisotropic Lattices

    Full text link
    Tadpole improved Wilson quark actions with clover terms on anisotropic lattices are studied numerically. Using asymmetric lattice volumes, the pseudo-scalar meson dispersion relations are measured for 8 lowest lattice momentum modes with quark mass values ranging from the strange to the charm quark with various values of the gauge coupling β\beta and 3 different values of the bare speed of light parameter ν\nu. These results can be utilized to extrapolate or interpolate to obtain the optimal value for the bare speed of light parameter νopt(m)\nu_{opt}(m) at a given gauge coupling for all bare quark mass values mm. In particular, the optimal values of ν\nu at the physical strange and charm quark mass are given for various gauge couplings. The lattice action with these optimized parameters can then be used to study physical properties of hadrons involving either light or heavy quarks.Comment: 22 pages, 7 figures, 2 tables. Analysis greatly modified compared with previous versio

    Robust synchronization of an array of coupled stochastic discrete-time delayed neural networks

    Get PDF
    Copyright [2008] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.This paper is concerned with the robust synchronization problem for an array of coupled stochastic discrete-time neural networks with time-varying delay. The individual neural network is subject to parameter uncertainty, stochastic disturbance, and time-varying delay, where the norm-bounded parameter uncertainties exist in both the state and weight matrices, the stochastic disturbance is in the form of a scalar Wiener process, and the time delay enters into the activation function. For the array of coupled neural networks, the constant coupling and delayed coupling are simultaneously considered. We aim to establish easy-to-verify conditions under which the addressed neural networks are synchronized. By using the Kronecker product as an effective tool, a linear matrix inequality (LMI) approach is developed to derive several sufficient criteria ensuring the coupled delayed neural networks to be globally, robustly, exponentially synchronized in the mean square. The LMI-based conditions obtained are dependent not only on the lower bound but also on the upper bound of the time-varying delay, and can be solved efficiently via the Matlab LMI Toolbox. Two numerical examples are given to demonstrate the usefulness of the proposed synchronization scheme

    Flow Induced by the Impulsive Motion of an Infinite Flat Plate in a Dusty Gas

    Get PDF
    Flow Induced by the Impulsive Motion of an Immite Flat Plate in a Dusty Gas. The problem of flow induced by an infinite flat plate suddenly set into motion parallel to its own plane in an incompressible dusty gas is of considerable physical interest in its own right as well as because of its close relation to the non-linear, steady (constant-pressure) laminar boundary layer. Its solution provides complete and exact information about modifications of the boundary layer growth and skin friction due to particle-fluid interaction. Moreover, it provides a basis for judging the accuracy of approximations which have been employed in more complex problems of viscous fluid-particle motion. The uncoupled thermal Rayleigh problem for small relative temperature differences is directly inferred and this answers questions about the modifications of the surface heat transfer rate and about the possibility of similarity with the velocity boundary layer. Similarity is possible when, in addition to a Prandtl number of unity, the streamwise relaxation processes are also similar
    corecore