3,026 research outputs found
Recommended from our members
Spontaneous Carotid Artery Dissection Presenting as Trigeminal Neuralgia in the Emergency Department
Introduction: Carotid artery dissection (CAD) is a critical diagnosis in the emergency department (ED). Trigeminal neuralgia, while not uncommon, may cause the patient significant discomfort but generally is not attributed to severe morbidity and mortality.Case Report: We present a case of spontaneous CAD presenting with the classic intermittent “lightning-like” jaw and head pain suggestive of trigeminal neuralgia that was ultimately diagnosed utilizing computed tomography angiogram after multiple visits to the ED.Discussion: Coincidentally the patient had been started on anticoagulation a few days prior and no additional intervention was required.Conclusion: This case report discusses current recommendations for diagnosis, treatment, and long-term prognosis of CAD
Vortex configurations in a Pb/Cu microdot with a 2x2 antidot cluster
We present a detailed study of the transport properties of a superconducting
Pb/Cu microdot with a 2x2 antidot cluster. The superconducting-normal (S/N)
phase boundary, critical currents and current-voltage characteristics of this
structure have been measured. The S/N phase boundary as a function of field B
(T_c(B)) reveals an oscillatory structure caused by the limited number of
possible vortex configurations which can be realized in these small clusters of
pinning centres (antidots). We have analyzed the stability of these
configurations and discussed the possible dissipation mechanisms using the
critical current (J_c(B)) and voltage-current (V(I)) characteristics data. A
comparison of the experimental data of T_c(B) and J_c(B) with calculations in
the London limit of the Ginzburg-Landau theory confirms that vortices can
indeed be pinned by the antidots forming a cluster and that the ground-state
configurations of the vortices are noticeably modified by sending current
through the structure. The possibility of generating phase-slips as well as
motion of the vortices in the 2x2 antidot cluster has also been discussed.Comment: RevTeX, 22 pages, 15 figures, accepted for publication in PR
Hamiltonian Formalism of the de-Sitter Invariant Special Relativity
Lagrangian of the Einstein's special relativity with universal parameter
() is invariant under Poincar\'e transformation which preserves
Lorentz metric . The has been extended to be
one which is invariant under de Sitter transformation that preserves so called
Beltrami metric . There are two universal parameters and in
this Special Relativity (denote it as ). The
Lagrangian-Hamiltonian formulism of is formulated in this
paper. The canonic energy, canonic momenta, and 10 Noether charges
corresponding to the space-time's de Sitter symmetry are derived. The canonical
quantization of the mechanics for -free particle is
performed. The physics related to it is discussed.Comment: 24 pages, no figur
Ratchet Cellular Automata
In this work we propose a ratchet effect which provides a general means of
performing clocked logic operations on discrete particles, such as single
electrons or vortices. The states are propagated through the device by the use
of an applied AC drive. We numerically demonstrate that a complete logic
architecture is realizable using this ratchet. We consider specific
nanostructured superconducting geometries using superconducting materials under
an applied magnetic field, with the positions of the individual vortices in
samples acting as the logic states. These devices can be used as the building
blocks for an alternative microelectronic architecture.Comment: 4 pages, 3 figure
Effect of polycrystallinity on the optical properties of highly oriented ZnO grown by pulsed laser deposition
We report the results of photoluminescence and reflectance measurements on highly c-axis oriented polycrystalline ZnO grown by pulsed laser deposition. The samples measured were grown under identical conditions and were annealed in-situ at various temperatures for 10-15 min. The band-edge photoluminescence spectra of the material altered considerably with an increase in grain size, with increased free exciton emission and observable excitonic structure in the reflectance spectra. The green band emission also increased with increasing grain size. A deformation potential analysis of the effect of strain on the exciton energy positions of the A- and B-excitons demonstrated that the experimental exciton energies could not be explained solely in terms of sample strain. We propose that electric fields in the samples due to charge trapping at grain boundaries are responsible for the additional perturbation of the excitons. This interpretation is supported by theoretical estimates of the exciton energy perturbation due to electric fields. The behaviour of the green band in the samples provides additional evidence in favour of our model
Confinement and Quantization Effects in Mesoscopic Superconducting Structures
We have studied quantization and confinement effects in nanostructured
superconductors. Three different types of nanostructured samples were
investigated: individual structures (line, loop, dot), 1-dimensional (1D)
clusters of loops and 2D clusters of antidots, and finally large lattices of
antidots. Hereby, a crossover from individual elementary "plaquettes", via
clusters, to huge arrays of these elements, is realized. The main idea of our
study was to vary the boundary conditions for confinement of the
superconducting condensate by taking samples of different topology and, through
that, modifying the lowest Landau level E_LLL(H). Since the critical
temperature versus applied magnetic field T_c(H) is, in fact, E_LLL(H) measured
in temperature units, it is varied as well when the sample topology is changed
through nanostructuring. We demonstrate that in all studied nanostructured
superconductors the shape of the T_c(H) phase boundary is determined by the
confinement topology in a unique way.Comment: 28 pages, 19 EPS figures, uses LaTeX's aipproc.sty, contribution to
Euroschool on "Superconductivity in Networks and Mesoscopic Systems", held in
Siena, Italy (8-20 september 1997
Physical Electronics and Surface Physics
Contains reports on one research project.Joint Services Electronics Program (Contract DAAB07-74-C-0630
Hall carrier density and magnetoresistance measurements in thin film vanadium dioxide across the metal-insulator transition
Temperature dependent magneto-transport measurements in magnetic fields of up
to 12 Tesla were performed on thin film vanadium dioxide (VO2) across the
metal-insulator transition (MIT). The Hall carrier density increases by 4
orders of magnitude at the MIT and accounts almost entirely for the resistance
change. The Hall mobility varies little across the MIT and remains low,
~0.1cm2/V sec. Electrons are found to be the major carriers on both sides of
the MIT. Small positive magnetoresistance in the semiconducting phase is
measured
Snyder's Quantized Space-time and De Sitter Special Relativity
There is a one-to-one correspondence between Snyder's model in de Sitter
space of momenta and the \dS-invariant special relativity. This indicates that
physics at the Planck length and the scale should be
dual to each other and there is in-between gravity of local \dS-invariance
characterized by a dimensionless coupling constant .Comment: 8 page
- …
