13,656 research outputs found
A sock for foot-drop: A preliminary study on two chronic stroke patients
Background: Foot-drop is a common motor impairment of chronic stroke patients, which may be addressed with an ankle foot orthosis. Although there is reasonable evidence of effectiveness for ankle foot orthoses, user compliance is sometimes poor. This study investigated a new alternative to the ankle foot orthosis, the dorsiflex sock.
Case description and methods: The dorsiflex sock was evaluated using an A-B single case experimental design. Two community-dwelling, chronic stroke patients with foot-drop participated in this study. Measures were selected to span the International Classification of Function, Disability and Health domains and user views on the dorsiflex sock were also collected.
Findings and outcomes: The dorsiflex sock was not effective in improving participants’ walking symmetry, speed or energy expenditure. Participant 1 showed improvement in the distance he could walk in 6 min when using the dorsiflex sock, but this was in keeping with a general improvement trend over the course of this study. However, both participants viewed the dorsiflex sock positively and reported a positive effect on their walking.
Conclusion: Despite positive user perceptions, the study found no clear evidence that dorsiflex sock is effective in improving foot-drop.
Clinical relevance Although the dorsiflex sock offers an attractive alternative to an ankle foot orthosis, the case studies found no clear evidence of its efficacy. Clinicians should view this device with caution until further research becomes availabl
The Snowmelt-Runoff Model (SRM) user's manual
A manual to provide a means by which a user may apply the snowmelt runoff model (SRM) unaided is presented. Model structure, conditions of application, and data requirements, including remote sensing, are described. Guidance is given for determining various model variables and parameters. Possible sources of error are discussed and conversion of snowmelt runoff model (SRM) from the simulation mode to the operational forecasting mode is explained. A computer program is presented for running SRM is easily adaptable to most systems used by water resources agencies
Heavy ion plasma confinement in an RF quadrupole trap
The confinement of an electron free plasma in a pure quadrupole RF electric trap was considered. The ultimate goal was to produce a large density of mercury ions, in order to realize a trapped ion frequency standard using the hyperfine resonance of 199 Hg(+) at 40.7 GHz. An attempt was made to obtain an iodine plasma consisting of equal numbers of positive and negative ions of atomic iodine, the positive iodine ions, being susceptible to charge-exchange with mercury atoms, will produce the desired mercury ions. The experiment showed that the photoproduction of ions pairs in iodine using the necessary UV radiation occurs with a small cross-section, making it difficult to demonstrate the feasibility of space charge neutralization in a quadrupole trap. For this reason it was considered expedient to choose thallium iodide, which has a more favorable absorption spectrum (in the region of 2000 to 2100 A). The results indicate that, although the ionic recombination is a serious limiting factor, a considerable improvement can be obtained in practice for the density of trapped ions, with a considerable advantage in lifetimes for spectroscopic purposes. The ion pair formation by photoionization is briefly reviewed
Shape in an Atom of Space: Exploring quantum geometry phenomenology
A phenomenology for the deep spatial geometry of loop quantum gravity is
introduced. In the context of a simple model, an atom of space, it is shown how
purely combinatorial structures can affect observations. The angle operator is
used to develop a model of angular corrections to local, continuum flat-space
3-geometries. The physical effects involve neither breaking of local Lorentz
invariance nor Planck scale suppression, but rather reply on only the
combinatorics of SU(2) recoupling. Bhabha scattering is discussed as an example
of how the effects might be observationally accessible.Comment: 14 pages, 7 figures; v2 references adde
Comprehensive structural model of the mechanochemical cycle of a mitotic motor highlights molecular adaptations in the kinesin family
Kinesins are responsible for a wide variety of microtubule-based, ATP-dependent
functions. Their motor domain drives these activities but the molecular adaptations
that specify these diverse and essential cellular activities are poorly understood. It
has been assumed that the first identified kinesin - the transport motor kinesin-1 – is
the mechanistic paradigm for the entire superfamily, but accumulating evidence
suggests that this is not the case. To address the deficits in our understanding of the
molecular basis of functional divergence within the kinesin superfamily, we studied
kinesin-5s, which are essential mitotic motors whose inhibition blocks cell division.
Using cryo-electron microscopy and subnanometer resolution structure
determination, we have visualised conformations of microtubule-bound human
kinesin-5 motor domain at successive steps in its ATPase cycle. Following ATP
hydrolysis, nucleotide-dependent conformational changes in the active site are
allosterically propagated into rotations of the motor domain and uncurling of the drugbinding
loop L5. In addition, the mechanical neck-linker element that is crucial for
motor stepping undergoes discrete, ordered displacements. We also observed large
reorientations of the motor N-terminus that indicate its importance for kinesin-5
function through control of neck-linker conformation. A kinesin-5 mutant lacking this
N-terminus is enzymatically active, and ATP-dependent neck-linker movement and
motility is defective although not ablated. All these aspects of kinesin-5
mechanochemistry are distinct from kinesin-1. Our findings directly demonstrate the
regulatory role of the kinesin-5 N-terminus in collaboration with the motor’s structured
neck-linker, and highlight the multiple adaptations within kinesin motor domains that
tune their mechanochemistries according to distinct functional requirements
Spin-triplet paired phases inside ferromagnet induced by Hund's rule coupling and electronic correlations: Application to
We discuss a mechanism of real-space spin-triplet pairing, alternative to
that due to quantum paramagnon excitations, and demonstrate its applicability
to . Both the Hund's rule ferromagnetic exchange and
inter-electronic correlations contribute to the same extent to the equal-spin
pairing, particularly in the regime in which the weak-coupling solution does
not provide any. The theoretical results, obtained within the
orbitally-degenerate Anderson lattice model, match excellently the observed
phase diagram for with the coexistent ferromagnetic (FM1) and
superconducting (-type) phase. Additionally, weak - and -type
paired phases appear in very narrow regions near the metamaganetic (FM2
FM1) and FM1 paramagnetic first-order
phase-transition borders, respectively. The values of magnetic moments in the
FM2 and FM1 states are also reproduced correctly in a semiquantitative manner.
The Hund's metal regime is also singled out as appearing near FM1-FM2 boundary
Lived experiences of informal caregivers of people with chronic musculoskeletal pain: a systematic review and meta-ethnography
BACKGROUND: People with chronic pain often seek support from friends and family for everyday tasks. These individuals are termed informal caregivers. There remains uncertainty regarding the lived experiences of these people who care for individuals with chronic musculoskeletal pain. The aim of this paper is to synthase the evidence on the lived experiences of informal caregivers providing care to people with chronic musculoskeletal pain. METHODS: A systematic literature review was undertaken of published and unpublished literature databases including: EMBASE, MEDLINE, CINAHL, PubMed, the WHO International Clinical Trial Registry and ClinicalTrials.gov registry (to September 2019). Qualitative studies exploring the lived experiences of informal caregivers of people with chronic musculoskeletal pain were included. Data were synthesised using a meta-ethnography approach. Evidence was evaluated using the Critical Appraisal Skills Programme (CASP) qualitative appraisal tool. RESULTS: From 534 citations, 10 studies were eligible (360 participants: 171 informal caregivers of 189 care recipients). The evidence was moderate quality. Seven themes arose: the relationship of caregivers to healthcare professionals, role reversal with care recipients; acting the confidant to the care recipient; a constant burden in caregiving; legitimising care recipient’s condition; knowledge and skills to provide caregiving; and the perception of other family members and wider-society to the caregiver/care recipient dyad. CONCLUSIONS: The lived experiences of caregivers of people with chronic musculoskeletal pain is complex and dynamic. There is an inter-connected relationship between caregivers, care recipients and healthcare professionals. Exploring how these experiences can be modified to improve a caregiving dyad’s lived experience is now warranted
Recommended from our members
The ionospheric response over the UK to major bombing raids during World War II
The Earth’s ionosphere is subject to disturbance from above (via solar variability and space weather effects) and from below (such as tectonic activity, thunderstorms and sudden stratospheric warmings). Identifying the relative contribution of these effects remains challenging, despite recent advances in spacecraft monitoring near-Earth space. Man-made explosions provide a quantifiable proxy for natural terrestrial sources, enabling their impact on ionospheric variability to be studied. In this paper, the contribution of ground-based disturbances to ionospheric variability is investigated by considering the response of the ionospheric F2-layer over Slough, UK, to 152 major bombing raids over Europe during World War II, using a superposed epoch analysis. The median response of the F2 layer is a significant decrease in peak electron concentration (~0.3 MHz decrease in foF2). This response is consistent with wave energy heating the thermosphere, enhancing the (temperature dependant) loss rate of O+ ions. The analysis was repeated for a range of thresholds in both time of bombing before the (noon) ionospheric measurement and tonnage of bombs dropped per raid. It was found that significant (~2-3σ) deviations from the mean occurred for events occurring between approximately 3 and 7 hours ahead of the noon ionospheric measurements and for raids using a minimum of between 100 and 800 tonnes of high explosives. The most significant ionospheric response (2.99σ) occurred for 21 raids up to 5 hours before the ionospheric measurement, each with a minimum of 300 tonnes of explosives. To ensure that the observed ionospheric response cannot be attributable to space weather sources, the analysis was restricted to those events for which the geomagnetic Ap index was less than 48 (Kp < 5). Digitisation of the early ionospheric data would enable the investigation into the response of additional ionospheric parameters (sporadic E, E and F1 layer heights and peak concentrations). One metric ton of TNT has an explosive energy of 4.184 109 joules, which is of the same order of energy as a cloud to ground lightning stroke. Since the occurrence of lightning has distinctive diurnal and seasonal cycles, it is feasible that a similar mechanism could contribute to the observed seasonal anomaly in ionospheric F-region electron concentrations. Further investigation, using less extreme examples, is required to determine the minimum explosive energy required to generate a detectable ionospheric response
- …
