1,237 research outputs found

    Services liberalisation in Germany: Overview and the potential of deregulation. A study by the institute for economic policy at the university of Cologne

    Full text link
    The structure of the German economy changed drastically over time. The decline of the proportion of gross value added of the manufacturing sector at the expense of the services sector is often cited as an indicator for this structural change. However, this shift is not necessarily an indication of a decreas-ing importance of the manufacturing sector, but rather it points to a fundamental change of the gross value added process in manufacturing. Within the manufacturing process, business services and product-related services are growing in importance in development, production, marketing and sales as well as in customer relations and maintenance. With the increasing importance of intermediate inputs of the business services sector the interest in the regulatory framework for the provision of these services and the resulting welfare effect is also increasing. Inappropriate regulation can, inter alia, lead to the waste of resources in the production process and to unexploited innovation potential. Negative effects would especially occur in the downstream domestic production areas, which compete internationally and, therefore, need competitive services. Conversely, the reduction of unnecessary regulation- and trading-barriers can release unused growth potential not just in the services sector, but also in the manufacturing sector. The OECD has recorded the level of regulation for selected professional services since 1998. The indicators of the OECD confirm that substantial structural reforms have taken place in Germany in the past. Nonetheless, Germany does not have one of the lowest indicator values of EU countries. In addition, other regulation measures like the Service Trade Restrictiveness Indicator also published by the OECD and the level of economic rents suggest further deregulation potential in the professional services sector. This study offers three principles for the identification of potential deregulation targets. First, we recommend the equalisation of different profession-specific regulations for professions with comparable fields of activity to the currently lowest level of regulation. Second, one can consider the equalisation of state specific regulations within Germany for the same professions to the lowest existing intensity of intervention. Third, "gold-plating" of existing and future EU demands should be avoided. The results of the econometric analyses for selected business services carried out as a part of this study confirms the significant impacts on welfare of past structural reforms on the net value added in the downstream manufacturing production as well as in the overall economy. Furthermore, the discovered interrelationships give rise to positive indications for the expected effects of potential future reforms, which should have growth effects particular on the German manufacturing sector.Die Struktur der deutschen Wirtschaft hat sich in der Vergangenheit stark gewandelt. Als Indikator für diesen Strukturwandel wird oftmals der langjährige Rückgang des Wertschöpfungsanteils der Industrie zugunsten der Dienstleistungen angeführt, die einen immer größeren Teil der wirtschaftlichen Leistung ausmachen. Diese Verschiebung ist jedoch nicht zwingend Ausdruck einer schwindenden Bedeutung der Industrie, vielmehr deutet sie auf eine grundlegende Veränderung im industriellen Wertschöpfungsprozess hin. Innerhalb der industriellen Wertschöpfung gewinnen unternehmensbezogene und produktbegleitende Dienstleistungen sowohl in Entwicklung, Produktion, Vermarktung und Vertrieb als auch in der anschließenden Kundenbetreuung und Wartung immer mehr an Bedeutung. Mit zunehmender Bedeutung der Vorprodukte dieser unternehmensbezogenen Dienstleistungen steigt auch das Interesse an der Ausgestaltung des Regelrahmens für die Erbringung dieser Dienstleistungen und den daraus folgenden Wohlfahrtseffekten. Eine nicht sachgemäße Regulierung dieser unternehmensbezogenen Dienstleistungen kann unter anderem dazu führen, dass es im Produktionsprozess zu Ressourcenverschwendung kommt und Innovationspotential nicht ausgeschöpft wird. Negativ betroffen wären insbesondere nachgelagerte inländische Produktionsbereiche, die im internationalen Wettbewerb stehen und daher auf wettbewerbsfähige Dienstleistungen angewiesen sind. Im Umkehrschluss könnte der Abbau nicht erforderlicher Regulierungs- und Handelshemmnisse bisher ungenutzte Wachstumspotentiale freisetzen. Der Umfang an Regulierungen wird für ausgewählte Unternehmensdienste ("Professional Services") von der OECD seit dem Jahr 1998 fortlaufend erfasst. Die Indikatoren der OECD bescheinigen Deutschland signifikante Strukturreformen in der Vergangenheit. Dennoch gehört Deutschland auch weiterhin im EU-Vergleich nicht zu den Ländern mit den geringsten Indikatorwerten. Auch andere Regulierungsmaße wie der ebenfalls von der OECD herausgegebene "Service Trade Restrictivnes Indikator" oder die Höhe der ökonomischen Renten lassen ein gewisses Deregulierungspotenzial im Bereich der "Professional Services" vermuten. Zur Identifikation möglicher Deregulierungsbereiche bietet die vorliegende Studie drei Heuristiken an: Erstens empfiehlt sich die Angleichung unterschiedlicher berufsspezifischer Regulierungen bei vergleichbaren Tätigkeitsfeldern auf das gegenwärtig niedrigere Regulierungsniveau. Zweitens kann die Angleichung unterschiedlicher bundeslandspezifischer Regulierungen für gleiche Berufe auf die jeweils niedrigere bestehende Eingriffsintensität erwogen werden. Und drittens sollte bei der Umsetzung bestehender und künftiger EU-Vorgaben auf eine "Übererfüllung" verzichtet werden. Die Ergebnisse einer im Rahmen dieser Studie durchgeführten ökonometrischen Analyse für ausgewählte unternehmensbezogene Dienstleistungen bestätigen positive Effekte vergangener Strukturreformen auf die Bruttowertschöpfung in nachgelagerten Produktionsbereichen sowohl in der Industrie als auch in der Gesamtwirtschaft. Die gefundenen Wirkungszusammenhänge liefern auch einen Anhaltspunkt für die Einordnung der zu erwartenden Effekte künftiger potentieller Reformbemühungen, die insbesondere auch für die Industrie mit Wachstumswirkungen verbunden sein dürften

    KELT-3b: A Hot Jupiter Transiting A V=9.8 Late-F Star

    Get PDF
    We report the discovery of KELT-3b, a moderately inflated transiting hot Jupiter with a mass of 1.477(-0.067)(+0.066) M-J, radius of 1.345 +/- 0.072 R-J, and an orbital period of 2.7033904 +/- 0.000010 days. The host star, KELT-3, is a V = 9.8 late F star with M-* = 1.278(-0.061)(+0.063) M-circle dot, R-* = 1.472(-0.067)(+0.065) R-circle dot, T-eff = 6306(-49)(+50) K, log(g) = 4.209(-0.031)(+0.033), and [Fe/H] = 0.044(-0.082)(+0.080), and has a likely proper motion companion. KELT-3b is the third transiting exoplanet discovered by the KELT survey, and is orbiting one of the 20 brightest known transiting planet host stars, making it a promising candidate for detailed characterization studies. Although we infer that KELT-3 is significantly evolved, a preliminary analysis of the stellar and orbital evolution of the system suggests that the planet has likely always received a level of incident flux above the empirically identified threshold for radius inflation suggested by Demory & Seager

    KELT-8b: A highly inflated transiting hot Jupiter and a new technique for extracting high-precision radial velocities from noisy spectra

    Get PDF
    We announce the discovery of a highly inflated transiting hot Jupiter discovered by the KELT-North survey. A global analysis including constraints from isochrones indicates that the V = 10.8 host star (HD 343246) is a mildly evolved, G dwarf with Teff=575455+54T_{\rm eff} = 5754_{-55}^{+54} K, logg=4.0780.054+0.049\log{g} = 4.078_{-0.054}^{+0.049}, [Fe/H]=0.272±0.038[Fe/H] = 0.272\pm0.038, an inferred mass M=1.2110.066+0.078M_{*}=1.211_{-0.066}^{+0.078} M_{\odot}, and radius R=1.670.12+0.14R_{*}=1.67_{-0.12}^{+0.14} R_{\odot}. The planetary companion has mass MP=0.8670.061+0.065M_P = 0.867_{-0.061}^{+0.065} MJM_{J}, radius RP=1.860.16+0.18R_P = 1.86_{-0.16}^{+0.18} RJR_{J}, surface gravity loggP=2.7930.075+0.072\log{g_{P}} = 2.793_{-0.075}^{+0.072}, and density ρP=0.1670.038+0.047\rho_P = 0.167_{-0.038}^{+0.047} g cm3^{-3}. The planet is on a roughly circular orbit with semimajor axis a=0.045710.00084+0.00096a = 0.04571_{-0.00084}^{+0.00096} AU and eccentricity e=0.0350.025+0.050e = 0.035_{-0.025}^{+0.050}. The best-fit linear ephemeris is T0=2456883.4803±0.0007T_0 = 2456883.4803 \pm 0.0007 BJDTDB_{\rm TDB} and P=3.24406±0.00016P = 3.24406 \pm 0.00016 days. This planet is one of the most inflated of all known transiting exoplanets, making it one of the few members of a class of extremely low density, highly-irradiated gas giants. The low stellar logg\log{g} and large implied radius are supported by stellar density constraints from follow-up light curves, plus an evolutionary and space motion analysis. We also develop a new technique to extract high precision radial velocities from noisy spectra that reduces the observing time needed to confirm transiting planet candidates. This planet boasts deep transits of a bright star, a large inferred atmospheric scale height, and a high equilibrium temperature of Teq=167555+61T_{eq}=1675^{+61}_{-55} K, assuming zero albedo and perfect heat redistribution, making it one of the best targets for future atmospheric characterization studies.Comment: Submitted to ApJ, feedback is welcom

    KELT-18b: Puffy Planet, Hot Host, Probably Perturbed

    Get PDF
    We report the discovery of KELT-18b, a transiting hot Jupiter in a 2.87-day orbit around the bright ( V = 10.1), hot, F4V star BD+60 1538 (TYC 3865-1173-1). We present follow-up photometry, spectroscopy, and adaptive optics imaging that allow a detailed characterization of the system. Our preferred model fits yield a host stellar temperature of K and a mass of , situating it as one of only a handful of known transiting planets with hosts that are as hot, massive, and bright. The planet has a mass of , a radius of , and a density of , making it one of the most inflated planets known around a hot star. We argue that KELT-18b’s high temperature and low surface gravity, which yield an estimated ∼600 km atmospheric scale height, combined with its hot, bright host, make it an excellent candidate for observations aimed at atmospheric characterization. We also present evidence for a bound stellar companion at a projected separation of ∼1100 au, and speculate that it may have contributed to the strong misalignment we suspect between KELT-18\u27s spin axis and its planet’s orbital axis. The inferior conjunction time is 2457542.524998 ± 0.000416 (BJD TDB ) and the orbital period is 2.8717510 ± 0.0000029 days. We encourage Rossiter–McLaughlin measurements in the near future to confirm the suspected spin–orbit misalignment of this system

    A Giant Planet Undergoing Extreme-Ultraviolet Irradiation By Its Hot Massive-Star Host

    Get PDF
    The amount of ultraviolet irradiation and ablation experienced by a planet depends strongly on the temperature of its host star. Of the thousands of extrasolar planets now known, only six have been found that transit hot, A-type stars (with temperatures of 7,300–10,000 kelvin), and no planets are known to transit the even hotter B-type stars. For example, WASP-33 is an A-type star with a temperature of about 7,430 kelvin, which hosts the hottest known transiting planet, WASP-33b (ref. 1); the planet is itself as hot as a red dwarf star of type M (ref. 2). WASP-33b displays a large heat differential between its dayside and nightside2, and is highly inflated–traits that have been linked to high insolation3,4. However, even at the temperature of its dayside, its atmosphere probably resembles the molecule-dominated atmospheres of other planets and, given the level of ultraviolet irradiation it experiences, its atmosphere is unlikely to be substantially ablated over the lifetime of its star. Here we report observations of the bright star HD 195689 (also known as KELT-9), which reveal a close-in (orbital period of about 1.48 days) transiting giant planet, KELT-9b. At approximately 10,170 kelvin, the host star is at the dividing line between stars of type A and B, and we measure the dayside temperature of KELT-9b to be about 4,600 kelvin. This is as hot as stars of stellar type K4 (ref. 5). The molecules in K stars are entirely dissociated, and so the primary sources of opacity in the dayside atmosphere of KELT-9b are probably atomic metals. Furthermore, KELT-9b receives 700 times more extreme-ultraviolet radiation (that is, with wavelengths shorter than 91.2 nanometres) than WASP-33b, leading to a predicted range of mass-loss rates that could leave the planet largely stripped of its envelope during the main-sequence lifetime of the host star (ref. 6)

    KELT-3b: A Hot Jupiter Transiting a V=9.8 Late-F Star

    Get PDF
    We report the discovery of KELT-3b, a moderately inflated transiting hot Jupiter with a mass of 1.477 (-0.067, +0.066) M_J, and radius of 1.345 +/- 0.072 R_J, with an orbital period of 2.7033904 +/- 0.000010 days. The host star, KELT-3, is a V=9.8 late F star with M_* = 1.278 (-0.061, +0.063) M_sun, R_* = 1.472 (-0.067, +0.065) R_sun, T_eff = 6306 (-49, +50) K, log(g) = 4.209 (-0.031, +0.033), and [Fe/H] = 0.044 (-0.082, +0.080), and has a likely proper motion companion. KELT-3b is the third transiting exoplanet discovered by the KELT survey, and is orbiting one of the 20 brightest known transiting planet host stars, making it a promising candidate for detailed characterization studies. Although we infer that KELT-3 is significantly evolved, a preliminary analysis of the stellar and orbital evolution of the system suggests that the planet has likely always received a level of incident flux above the empirically-identified threshold for radius inflation suggested by Demory & Seager (2011).Comment: 12 pages, 12 figures, accepted to Ap

    KELT-2Ab: A Hot Jupiter Transiting the Bright (V=8.77) Primary Star of a Binary System

    Get PDF
    We report the discovery of KELT-2Ab, a hot Jupiter transiting the bright (V=8.77) primary star of the HD 42176 binary system. The host is a slightly evolved late F-star likely in the very short-lived "blue-hook" stage of evolution, with \teff=6148\pm48{\rm K}, logg=4.0300.026+0.015\log{g}=4.030_{-0.026}^{+0.015} and \feh=0.034\pm0.78. The inferred stellar mass is M=1.3140.060+0.063M_*=1.314_{-0.060}^{+0.063}\msun\ and the star has a relatively large radius of R=1.8360.046+0.066R_*=1.836_{-0.046}^{+0.066}\rsun. The planet is a typical hot Jupiter with period 4.11379±0.000014.11379\pm0.00001 days and a mass of MP=1.524±0.088M_P=1.524\pm0.088\mj\ and radius of RP=1.2900.050+0.064R_P=1.290_{-0.050}^{+0.064}\rj. This is mildly inflated as compared to models of irradiated giant planets at the \sim4 Gyr age of the system. KELT-2A is the third brightest star with a transiting planet identified by ground-based transit surveys, and the ninth brightest star overall with a transiting planet. KELT-2Ab's mass and radius are unique among the subset of planets with V<9V<9 host stars, and therefore increases the diversity of bright benchmark systems. We also measure the relative motion of KELT-2A and -2B over a baseline of 38 years, robustly demonstrating for the first time that the stars are bound. This allows us to infer that KELT-2B is an early K-dwarf. We hypothesize that through the eccentric Kozai mechanism KELT-2B may have emplaced KELT-2Ab in its current orbit. This scenario is potentially testable with Rossiter-McLaughlin measurements, which should have an amplitude of \sim44 m s1^{-1}.Comment: 9 pages, 2 tables, 4 figures. A short video describing this paper is available at http://www.youtube.com/watch?v=wVS8lnkXXlE. Revised to reflect the ApJL version. Note that figure 4 is not in the ApJL versio
    corecore