1,862 research outputs found

    On extended thermonuclear functions through pathway model

    Full text link
    The major problem in the cosmological nucleosynthesis is the evaluation of the reaction rate. The present scenario is that the standard thermonuclear function in the Maxwell-Boltzmann form is evaluated by using various techniques. The Maxwell-Boltzmannian approach to nuclear reaction rate theory is extended to cover Tsallis statistics (Tsallis, 1988) and more general cases of distribution functions. The main purpose of this paper is to investigate in some more detail the extended reaction probability integral in the equilibrium thermodynamic argument and in the cut-off case. The extended reaction probability integrals will be evaluated in closed form for all convenient values of the parameter by means of residue calculus. A comparison of the standard reaction probability integrals with the extended reaction probability integrals is also done.Comment: 21 pages, LaTe

    Fusion yield: Guderley model and Tsallis statistics

    Full text link
    The reaction rate probability integral is extended from Maxwell-Boltzmann approach to a more general approach by using the pathway model introduced by Mathai [Mathai A.M.:2005, A pathway to matrix-variate gamma and normal densities, Linear Algebra and Its Applications}, 396, 317-328]. The extended thermonuclear reaction rate is obtained in closed form via a Meijer's G-function and the so obtained G-function is represented as a solution of a homogeneous linear differential equation. A physical model for the hydrodynamical process in a fusion plasma compressed and laser-driven spherical shock wave is used for evaluating the fusion energy integral by integrating the extended thermonuclear reaction rate integral over the temperature. The result obtained is compared with the standard fusion yield obtained by Haubold and John in 1981.[Haubold, H.J. and John, R.W.:1981, Analytical representation of the thermonuclear reaction rate and fusion energy production in a spherical plasma shock wave, Plasma Physics, 23, 399-411]. An interpretation for the pathway parameter is also given.Comment: 17 pages, LaTe

    A certain class of Laplace transforms with applications to reaction and reaction-diffusion equations

    Full text link
    A class of Laplace transforms is examined to show that particular cases of this class are associated with production-destruction and reaction-diffusion problems in physics, study of differences of independently distributed random variables and the concept of Laplacianness in statistics, alpha-Laplace and Mittag-Leffler stochastic processes, the concepts of infinite divisibility and geometric infinite divisibility problems in probability theory and certain fractional integrals and fractional derivatives. A number of applications are pointed out with special reference to solutions of fractional reaction and reaction-diffusion equations and their generalizations.Comment: LaTeX, 12 pages, corrected typo
    corecore