280 research outputs found
Toward Improved Observing of the Rapidly Changing Arctic Ocean
Arctic Observing Summit (April 30 – May 2, 2013, Vancouver, Canada); AON statementIn order to observe and understand the Arctic Ocean and its response to climate change, the traditional approach of acquiring observations when and where the Arctic is accessible has to be enhanced with multi-faceted measurement systems operating autonomously to provide year-round information in real time. The major goal of such a network of autonomous sensors is to measure and monitor physical, chemical and biological parameters in the atmosphere, sea ice and ocean on at least daily intervals
Temporal and spatial characteristics of ozone depletion events from measurements in the Arctic
Following polar sunrise in the Arctic springtime, tropospheric ozone
episodically decreases rapidly to near-zero levels during ozone depletion
events (ODEs). Many uncertainties remain in our understanding of ODE
characteristics, including the temporal and spatial scales, as well as
environmental drivers. Measurements of ozone, bromine monoxide (BrO), and
meteorology were obtained during several deployments of autonomous,
ice-tethered buoys (O-Buoys) from both coastal sites and over the Arctic
Ocean; these data were used to characterize observed ODEs. Detected
decreases in surface ozone levels during the onset of ODEs corresponded to a
median estimated apparent ozone depletion timescale (based on both chemistry
and the advection of O<sub>3</sub>-depleted air) of 11 h. If assumed to be
dominated by chemical mechanisms, these timescales would correspond to
larger-than-observed BrO mole fractions based on known chemistry and assumed
other radical levels. Using backward air mass trajectories and an assumption
that transport mechanisms dominate observations, the spatial scales for ODEs
(defined by time periods in which ozone levels ≤15 nmol mol<sup>−1</sup>)
were estimated to be 877 km (median), while areas estimated to represent
major ozone depletions (<10 nmol mol<sup>−1</sup>) had dimensions of
282 km (median). These observations point to a heterogeneous boundary layer with
localized regions of active, ozone-destroying halogen chemistry,
interspersed among larger regions of previously depleted air that retain
reduced ozone levels through hindered atmospheric mixing. Based on the
estimated size distribution, Monte Carlo simulations showed it was
statistically possible that all ODEs observed could have originated upwind,
followed by transport to the measurement site. Local wind speed averages
were low during most ODEs (median of ~3.6 m s<sup>−1</sup>), and
there was no apparent dependence on local temperature
Differentiated neuroprogenitor cells incubated with human or canine adenovirus, or lentiviral vectors have distinct transcriptome profiles
Several studies have demonstrated the potential for vector-mediated gene transfer to the brain. Helper-dependent (HD) human (HAd) and canine (CAV-2) adenovirus, and VSV-G-pseudotyped self-inactivating HIV-1 vectors (LV) effectively transduce human brain cells and their toxicity has been partly analysed. However, their effect on the brain homeostasis is far from fully defined, especially because of the complexity of the central nervous system (CNS). With the goal of dissecting the toxicogenomic signatures of the three vectors for human neurons, we transduced a bona fide human neuronal system with HD-HAd, HD-CAV-2 and LV. We analysed the transcriptional response of more than 47,000 transcripts using gene chips. Chip data showed that HD-CAV-2 and LV vectors activated the innate arm of the immune response, including Toll-like receptors and hyaluronan circuits. LV vector also induced an IFN response. Moreover, HD-CAV-2 and LV vectors affected DNA damage pathways - but in opposite directions - suggesting a differential response of the p53 and ATM pathways to the vector genomes. As a general response to the vectors, human neurons activated pro-survival genes and neuron morphogenesis, presumably with the goal of re-establishing homeostasis. These data are complementary to in vivo studies on brain vector toxicity and allow a better understanding of the impact of viral vectors on human neurons, and mechanistic approaches to improve the therapeutic impact of brain-directed gene transfer
DSYB catalyses the key step of dimethylsulfoniopropionate biosynthesis in many phytoplankton
Dimethylsulfoniopropionate (DMSP) is a globally important organosulfur molecule and the major precursor for dimethyl sulfide. These compounds are important info-chemicals, key nutrients for marine microorganisms, and are involved in global sulfur cycling, atmospheric chemistry and cloud formation1,2,3. DMSP production was thought to be confined to eukaryotes, but heterotrophic bacteria can also produce DMSP through the pathway used by most phytoplankton4, and the DsyB enzyme catalysing the key step of this pathway in bacteria was recently identified5. However, eukaryotic phytoplankton probably produce most of Earth’s DMSP, yet no DMSP biosynthesis genes have been identified in any such organisms. Here we identify functional dsyB homologues, termed DSYB, in many phytoplankton and corals. DSYB is a methylthiohydroxybutryate methyltransferase enzyme localized in the chloroplasts and mitochondria of the haptophyte Prymnesium parvum, and stable isotope tracking experiments support these organelles as sites of DMSP synthesis. DSYB transcription levels increased with DMSP concentrations in different phytoplankton and were indicative of intracellular DMSP. Identification of the eukaryotic DSYB sequences, along with bacterial dsyB, provides the first molecular tools to predict the relative contributions of eukaryotes and prokaryotes to global DMSP production. Furthermore, evolutionary analysis suggests that eukaryotic DSYB originated in bacteria and was passed to eukaryotes early in their evolution
Taxonomic and Environmental Variability in the Elemental Composition and Stoichiometry of Individual Dinoflagellate and Diatom Cells from the NW Mediterranean Sea
Here we present, for the first time, the elemental concentration, including C, N and O, of single phytoplankton cells collected from the sea. Plankton elemental concentration and stoichiometry are key variables in phytoplankton ecophysiology and ocean biogeochemistry, and are used to link cells and ecosystems. However, most field studies rely on bulk techniques that overestimate carbon and nitrogen because the samples include organic matter other than plankton organisms. Here we used X-ray microanalysis (XRMA), a technique that, unlike bulk analyses, gives simultaneous quotas of C, N, O, Mg, Si, P, and S, in single-cell organisms that can be collected directly from the sea. We analysed the elemental composition of dinoflagellates and diatoms (largely Chaetoceros spp.) collected from different sites of the Catalan coast (NW Mediterranean Sea). As expected, a lower C content is found in our cells compared to historical values of cultured cells. Our results indicate that, except for Si and O in diatoms, the mass of all elements is not a constant fraction of cell volume but rather decreases with increasing cell volume. Also, diatoms are significantly less dense in all the measured elements, except Si, compared to dinoflagellates. The N:P ratio of both groups is higher than the Redfield ratio, as it is the N:P nutrient ratio in deep NW Mediterranean Sea waters (N:P = 20–23). The results suggest that the P requirement is highest for bacterioplankton, followed by dinoflagellates, and lowest for diatoms, giving them a clear ecological advantage in P-limited environments like the Mediterranean Sea. Finally, the P concentration of cells of the same genera but growing under different nutrient conditions was the same, suggesting that the P quota of these cells is at a critical level. Our results indicate that XRMA is an accurate technique to determine single cell elemental quotas and derived conversion factors used to understand and model ocean biogeochemical cycles
DMSP synthesis and exudation in phytoplankton:a modeling approach
In the marine environment, phytoplankton are the fundamental producers of dimethylsulfoniopropionate (DMSP), the precursor of the climatically active gas dimethylsulfide (DMS). DMSP is released by exudation, cell autolysis, and zooplankton grazing during phytoplankton blooms. In this study, we developed a model of phytoplankton DMSP and DMS production allowing quantification of the exudation rates of these compounds during different growth phases. The model was tested on published data from axenic cultures of Prorocentrum minimum and Phaeocystis sp.; DMSP exudation rates vary considerably between the 2 species. Model results show that P. minimum exudes around 1% d(-1) of its DMSP quota during the latent, exponential and senescent phases. This is comparable to the average exudation rate estimated from previous laboratory experiments. However, Phaeocystis sp. exudes from 3 to 11% d(-1) of its DMSP quota. For this species, DMSP exudation rates apparently show an inverse relationship with the population growth rate. The maximum DMSP exudation rate in Phaeocystis sp. is 10 times higher than previously reported DMSP or DMS exudation rates. Our results suggest that exudation may be as important as cell autolysis in the release of DMSP during Phaeocystis sp. blooms. We conclude that exudation should be incorporated in models of DMS cycling in the marine environment. Moreover, our results for Phaeocystis sp. suggest that a low and constant exudation rate, as sometimes used in models, is not suitable for all conditions
Training primary health care providers in Colombia, Mexico and Peru to increase alcohol screening: mixed-methods process evaluation of implementation strategy.
Theoretical and practical knowledge curriculum for European Breast Surgeons
The Breast Surgery theoretical and practical knowledge curriculum comprehensively describes the knowledge and skills expected of a fully trained breast surgeon practicing in the European Union and European Economic Area (EEA). It forms part of a range of factors that contribute to the delivery of high quality cancer care. It has been developed by a panel of experts from across Europe and has been validated by professional breast surgery societies in Europe. The curriculum maps closely to the syllabus of the Union of European Medical Specialists (UEMS) Breast Surgery Exam, the UK FRCS (breast specialist interest) curriculum and other professional standards across Europe and globally (USA Society of Surgical Oncology, SSO). It is envisioned that this will serve as the basis for breast surgery training, examination and accreditation across Europe to harmonise and raise standards as breast surgery develops as a separate discipline from its parent specialties (general surgery, gynaecology, surgical oncology and plastic surgery). The curriculum is not static but will be revised and updated by the curriculum development group of the European Breast Surgical Oncology Certification group (BRESO) every 2 years
- …
