4,089 research outputs found
The H1 Forward Track Detector at HERA II
In order to maintain efficient tracking in the forward region of H1 after the
luminosity upgrade of the HERA machine, the H1 Forward Track Detector was also
upgraded. While much of the original software and techniques used for the HERA
I phase could be reused, the software for pattern recognition was completely
rewritten. This, along with several other improvements in hit finding and
high-level track reconstruction, are described in detail together with a
summary of the performance of the detector.Comment: Minor revision requested by journal (JINST) edito
Molecular motion in cell membranes: analytic study of fence-hindered random walks
A theoretical calculation is presented to describe the confined motion of
transmembrane molecules in cell membranes. The study is analytic, based on
Master equations for the probability of the molecules moving as random walkers,
and leads to explicit usable solutions including expressions for the molecular
mean square displacement and effective diffusion constants. One outcome is a
detailed understanding of the dependence of the time variation of the mean
square displacement on the initial placement of the molecule within the
confined region. How to use the calculations is illustrated by extracting
(confinement) compartment sizes from experimentally reported published
observations from single particle tracking experiments on the diffusion of
gold-tagged G-protein coupled mu-opioid receptors in the normal rat kidney cell
membrane, and by further comparing the analytical results to observations on
the diffusion of phospholipids, also in normal rat kidney cells.Comment: 10 pages, 5 figure
Tagging High Energy Photons in the H1 Detector at HERA
Measures taken to extend the acceptance of the H1 detector at HERA for
photoproduction events are described. These will enable the measurement of
electrons scattered in events in the high y range 0.85 < y < 0.95 in the 1998
and 1999 HERA run period. The improvement is achieved by the installation of an
electromagnetic calorimeter, the ET8, in the HERA tunnel close to the electron
beam line 8 m downstream of the H1 interaction point in the electron direction.
The ET8 will allow the study of tagged gamma p interactions at centre-of-mass
energies significantly higher than those previously attainable. The calorimeter
design and expected performance are discussed, as are results obtained using a
prototype placed as close as possible to the position of the ET8 during the
1996 and 1997 HERA running.Comment: 13 pages, 13 figure
Excitability in autonomous Boolean networks
We demonstrate theoretically and experimentally that excitable systems can be
built with autonomous Boolean networks. Their experimental implementation is
realized with asynchronous logic gates on a reconfigurabe chip. When these
excitable systems are assembled into time-delay networks, their dynamics
display nanosecond time-scale spike synchronization patterns that are
controllable in period and phase.Comment: 6 pages, 5 figures, accepted in Europhysics Letters
(epljournal.edpsciences.org
Effects of disorder in location and size of fence barriers on molecular motion in cell membranes
The effect of disorder in the energetic heights and in the physical locations
of fence barriers encountered by transmembrane molecules such as proteins and
lipids in their motion in cell membranes is studied theoretically. The
investigation takes as its starting point a recent analysis of a periodic
system with constant distances between barriers and constant values of barrier
heights, and employs effective medium theory to treat the disorder. The
calculations make possible, in principle, the extraction of confinement
parameters such as mean compartment sizes and mean intercompartmental
transition rates from experimentally reported published observations. The
analysis should be helpful both as an unusual application of effective medium
theory and as an investigation of observed molecular movements in cell
membranes.Comment: 9 pages, 5 figure
A New High Energy Photon Tagger for the H1 - Detector at HERA
The H1 detector at HERA has been upgraded by the addition of a new
electromagnetic calorimeter. This is installed in the HERA tunnel close to the
electron beam line at a position 8m from the interaction point in the electron
beam direction. The new calorimeter extends the acceptance for tagged
photoproduction events to the high y range, 0.85 < y < 0.95, and thus
significantly improves the capability of H1 to study high energy gamma-p
processes. The calorimeter design, performance and first results obtained
during the 1996-1999 HERA running are described.Comment: 17 pages, 16 figure
The effect of snow accumulation on imaging riometer performance
In January 1998 an imaging riometer system was deployed at Halley, Antarctica (76°S, 27°W), involving the construction of an array of 64 crossed-dipole antennas and a ground plane. Weather conditions at Halley mean that such an array will rapidly bury beneath the snow, so the system was tuned to operate efficiently when buried. Theoretical calculations indicate that because the distance between the ground plane and the array was scaled to be 1/4λ in the snow, as snow fills the gap the signal will increase by 0.6–2.5 dB. Similarly, the short antennas are resonant when operated in snow, not in air. Theoretical calculations show that the largest effect of this is the mismatch of their feed point impedance to the receiver network. As the signal for each riometer beam is composed of a contribution from all 64 antennas, for each antenna that buries the signal level will increase by 1/64 of ∼9 dB. The measured response of the system to burial showed significant changes as snow accumulated in and over the array during 1998. The changes are consistent with the magnitude of the effects predicted by the theoretical calculations. The Halley imaging riometer system, having now been buried completely, is operating more efficiently than if a standard air-tuned configuration had been deployed. The results are of considerable relevance to the ever-increasing community of imaging riometer users regarding both deployment and the subsequent interpretation of scientific data. Some systems will experience similar permanent burial, while others will be subject to significant annual variability as a result of becoming snow-covered during winter and clear during summer
Soil methane sink capacity response to a long-term wildfire chronosequence in Northern Sweden
Boreal forests occupy nearly one fifth of the terrestrial land surface and are recognised as globally important regulators of carbon (C) cycling and greenhouse gas emissions. Carbon sequestration processes in these forests include assimilation of CO2 into biomass and subsequently into soil organic matter, and soil microbial oxidation of methane (CH4). In this study we explored how ecosystem retrogression, which drives vegetation change, regulates the important process of soil CH4 oxidation in boreal forests. We measured soil CH4 oxidation processes on a group of 30 forested islands in northern Sweden differing greatly in fire history, and collectively representing a retrogressive chronosequence, spanning 5000 years. Across these islands the build-up of soil organic matter was observed to increase with time since fire disturbance, with a significant correlation between greater humus depth and increased net soil CH4 oxidation rates. We suggest that this increase in net CH4 oxidation rates, in the absence of disturbance, results as deeper humus stores accumulate and provide niches for methanotrophs to thrive. By using this gradient we have discovered important regulatory controls on the stability of soil CH4 oxidation processes that could not have not been explored through shorter-term experiments. Our findings indicate that in the absence of human interventions such as fire suppression, and with increased wildfire frequency, the globally important boreal CH4 sink could be diminished
The Conformal Anomaly of M5-Branes
We show that the conformal anomaly for N M5-branes grows like . The
method we employ relates Coulomb branch interactions in six dimensions to
interactions in four dimensions using supersymmetry. This leads to a relation
between the six-dimensional conformal anomaly and the conformal anomaly of N=4
Yang-Mills. Along the way, we determine the structure of the four derivative
interactions for the toroidally compactified (2,0) theory, while encountering
interesting novelties in the structure of the six derivative interactions.Comment: 38 pages, LaTeX; references adde
- …
