1,249 research outputs found
Growth and maturity of salmon sharks (Lamna ditropis) in the eastern and western North Pacific, and comments on back-calculation methods
Age and growth estimates for salmon sharks (Lamna ditropis) in the eastern North Pacific were derived from 182 vertebral centra collected from sharks ranging in length from 62.2 to 213.4 cm pre-caudal length (PCL) and compared to previously published age and growth data for salmon sharks in the western North Pacific. Eastern North Pacific female and male salmon sharks were aged up to 20 and 17 years, respectively. Relative marginal increment (RMI) analysis showed that postnatal rings form annually between January and March. Von Bertalanffy growth parameters derived from vertebral length-at-age data are L∞ =207.4 cm PCL, k=0.17/yr, and t0=−2.3 years for females (n=166), and L∞ =182.8 cm PCL, k=0.23/yr , and t0=−1.9 years for males (n=16). Age at maturity was estimated to range from six to nine years for females (median pre-caudal length of 164.7 cm PCL) and from three to five years old for males (median precaudal length of 124.0 cm PCL). Weight-length relationships for females and males in the eastern North Pacific are W=8.2 × 10_05 × L2.759 –06 × L3.383
(r2 =0.99) and W=3.2 × 10 (r2 =0.99), respectively. Our results show that female and male salmon sharks in the eastern North Pacific possess a faster growth rate, reach sexual maturity earlier, and attain greater weight-at-length than their same-sex counterparts living in the western North Pacific
Hydrodynamic aspects of shark scales
Ridge morphometrices on placoid scales from 12 galeoid shark species were examined in order to evaluate their potential value for frictional drag reduction. The geometry of the shark scales is similar to longitudinal grooved surfaces (riblets) that have been previously shown to give 8 percent skin-friction reduction for turbulent boundary layers. The present study of the shark scales was undertaken to determine if the physical dimensions of the ridges on the shark scales are of the right magnitude to be used by the sharks for drag reduction based on previous riblet work. The results indicate that the ridge heights and spacings are normally maintained between the predicted optimal values proposed for voluntary and burst swimming speeds throughout the individual's ontogeny. Moreover, the species which might be considered to be the faster posses smaller and more closely spaced ridges that based on the riblet work would suggest a greater frictional drag reduction value at the high swimming speeds, as compared to their more sluggish counterparts
A study to explore the use of orbital remote sensing to determine native arid plant distribution
The author has identified the following significant results. It is possible to determine, from ERTS imagery, native arid plant distribution. Using techniques of multispectral masking and extensive fieldwork, three native vegetation communities were defined and mapped in the Avra Valley study area. A map was made of the Yuma area with the aid of ground truth correlations between areas of desert pavement visible on ERTS images and unique vegetation types. With the exception of the Yuma soil-vegetation correlation phenomena, only very gross differentiations of desert vegetation communities can be made from ERTS data. Vegetation communities with obvious vegetation density differences such as saguaro-paloverde, creosote bush, and riparian vegetation can be separated on the Avra Valley imagery while more similar communities such as creosote bush and saltbush could not be differentiated. It is suggested that large differences in vegetation density are needed before the signatures of two different vegetation types can be differentiated on ERTS imagery. This is due to the relatively insignificant contribution of vegetation to the total radiometric signature of a given desert scene. Where more detailed information concerning the vegetation of arid regions is required, large scale imagery is appropriate
Decreased expression of caveolin 1 in patients with systemic sclerosis: crucial role in the pathogenesis of tissue fibrosis.
OBJECTIVE: Recent studies have implicated caveolin 1 in the regulation of transforming growth factor beta (TGFbeta) downstream signaling. Given the crucial role of TGFbeta in the pathogenesis of systemic sclerosis (SSc), we sought to determine whether caveolin 1 is also involved in the pathogenesis of tissue fibrosis in SSc. We analyzed the expression of CAV1 in affected SSc tissues, studied the effects of lack of expression of CAV1 in vitro and in vivo, and analyzed the effects of restoration of caveolin 1 function on the fibrotic phenotype of SSc fibroblasts in vitro.
METHODS: CAV1 expression in tissues was analyzed by immunofluorescence and confocal microscopy. The extent of tissue fibrosis in Cav1-knockout mice was assessed by histologic/histochemical analyses and quantified by hydroxyproline assays. Cav1-null and SSc fibroblast phenotypes and protein production were analyzed by real-time polymerase chain reaction, immunofluorescence, Western blot, and multiplexed enzyme-linked immunosorbent assay techniques. The effects of restoration of caveolin 1 function in SSc fibroblasts in vitro were also examined using a cell-permeable recombinant CAV1 peptide.
RESULTS: CAV1 was markedly decreased in the affected lungs and skin of SSc patients. Cav1-knockout mice developed pulmonary and skin fibrosis. Down-regulation of caveolin 1 was maintained in cultured SSc fibroblasts, and restoration of caveolin 1 function in vitro normalized their phenotype and abrogated TGFbeta stimulation through inhibition of Smad3 activation.
CONCLUSION: Caveolin 1 appears to participate in the pathogenesis of tissue fibrosis in SSc. Restoration of caveolin 1 function by treatment with a cell-permeable peptide corresponding to the CAV1 scaffolding domain may be a novel therapeutic approach in SSc
Development and Use of a Web-based Data Management System for a Randomized Clinical Trial of Adolescents and Young Adults
Recent advances in technology provide support for multi-site, web-based data entry systems and the storage of data in a centralized location, resulting in immediate access to data for investigators, reduced participant burden and human entry error, and improved integrity of clinical trial data. The purpose of this paper is to describe the development of a comprehensive, web-based data management system for a multi-site randomized behavioral intervention trial. Strategies used to create this study-specific data management system included interdisciplinary collaboration, design mapping, feasibility assessments, and input from an advisory board of former patients with characteristics similar to the targeted population. The resulting data management system and development strategies provide a template for other behavioral intervention studies
CD4 trajectory adjusting for dropout among HIV-positive patients receiving combination antiretroviral therapy in an East African HIV care centre
Objective: Estimates of CD4 response to antiretroviral therapy (ART) obtained by averaging data from patients in care, overestimate population CD4 response and treatment program effectiveness because they do not consider data from patients who are deceased or not in care. We use mathematical methods to assess and adjust for this bias based on patient characteristics. Design: We examined data from 25,261 HIV-positive patients from the East Africa IeDEA Consortium. Methods: We used inverse probability of censoring weighting (IPCW) to represent patients not in care by patients in care with similar characteristics. We address two questions: What would the median CD4 be “had everyone starting ART remained on observation?” and “were everyone starting ART maintained on treatment?” Results: Routine CD4 count estimates were higher than adjusted estimates even under the best-case scenario of maintaining all patients on treatment. Two years after starting ART, differences between estimates diverged from 30 cells/µL, assuming similar mortality and treatment access among dropouts as patients in care, to over 100 cells/µL assuming 20% lower survival and 50% lower treatment access among dropouts. When considering only patients in care, the proportion of patients with CD4 above 350 cells/µL was 50% adjusted to below 30% when accounting for patients not in care. One-year mortality diverged 6–14% from the naïve estimates depending on assumptions about access to care among lost patients. Conclusions: Ignoring mortality and loss to care results in over-estimation of ART response for patients starting treatment and exaggerates the efficacy of treatment programs administering it
Design and Analysis of a Cable-Driven Test Apparatus for Flapping-Flight Research
The biology, physiology, kinematics, and aerodynamics of insect flight have been a longstanding fascination for biologists and engineers. The former three are easily obtained through the observation of the organic species. The latter though, is very difficult to study in this fashion. In many cases, aerodynamic forces and fluid-body interactions can be simulated with computational fluid dynamics; another option is to use dynamically-scaled, experimental set-ups to measure physically these values.
An archetypal, experimental set-up may include one or two scaled wings, where each wing is actuated to achieve upwards of three degrees of freedom. The three degrees of freedom correspond biologically to the stroke, deviation, and rotation motions of real insects. The wing modules may be fixed to rotate about a central, fourth axis, mimicking the insect body rotation. Alternatively, the wing modules can be fixed to translate in one direction, copying the forward flight pattern of an insect. These experiments usually are performed in a tank of mineral oil, seeded to highlight the fluid\u27s movement. Unfortunately, the current state of experimental apparatuses limit the number and complexity of studiable flight patterns.
The goal is to use a subset of robotics called cable-driven parallel manipulators to improve upon and expand the capabilities of these apparatuses. For these robots, rigid links are replaced with tensioned cables and actuated via electric motors. Each cable attaches to the central manipulator platform, similar to other parallel manipulators. Some advantages of a cable-driven design are large position workspaces, low inertia, high manipulator dynamics, large strength-to-weight ratio, and no actuator-error stack-up. Cable manipulators have been researched in the lab and have been deployed commercially, such as at professional sports stadiums.
The manipulator uses a standard cuboid frame, with eight winches actuating eight cables. The manipulator platform is a scaled insect body, with each wing capable of three degrees of freedom, and an optimized attachment frame for the cables. The manipulator\u27s workspace for six degrees of freedom was derived from previous works and simulated in MathWorks\u27 MATLAB for a variety of parameterizations.
The lead design incorporates a novel, new cable configuration for realizing greater rotational capability over standard cable-driven manipulators. While a standard, Straight cable configuration allows for large translation but almost no rotation, the new Twist cable configuration provides a smaller yet spread out workspace that is sustainable through singular rotations up to at least 45°, as well as simultaneous rotations about multiple axes. Optimal trends for the attachment frame are discerned from comparing a multitude of size permutations for singular rotations. No one attachment frame holds equal rotational potential about all three axes; however, the strengths and weaknesses of an attachment frame easily are adaptable based on the proposed insect maneuver. To showcase the versatility of the apparatus with a 6 in × 2 in × 4 in attachment frame, four different flight maneuvers are analyzed.
The first two case studies prove the cable-driven apparatus can combine the individual functions of existing experimental apparatuses: MATLAB simulations show the device can perform a stationary 116° yaw rotation and separately can translate the end effector 32 in along one axis. A third case study investigates a previously published work on an evasive pitching maneuver from a hawkmoth. In the original study, the normally six-degree-of-freedom movement was distilled down to only one-dimensional translation and pitch rotation, such that it could be replicated in the lab. Using the cable-driven apparatus though, it is possible instead to reproduce the generalized, six-degree-of-freedom maneuver. Finally, a conceptual flight pattern is created to demonstrate the unique advantages of the cable-driven apparatus. The flight path models a pitched dive into a banked quarter turn, with a pitched climb upon exiting the turn. The equal necessity and coupling of all degrees of freedom for this maneuver means it cannot be performed on current experimental apparatuses, except for the cable-driven apparatus.
This new cable-driven test apparatus, with its unique design and modifications, would improve the capabilities for experimental studies and provide the most realistic set-up for flapping-flight research
- …
