618 research outputs found

    Accretion in Brown Dwarfs: an Infrared View

    Full text link
    This paper presents a study of the accretion properties of 19 very low mass objects (Mstar .01-0.1 Msun) in the regions Chamaeleon I and rho-Oph For 8 objects we obtained high resolution Halpha profiles and determined mass accretion rate Macc and accretion luminosity Lacc. Pabeta is detected in emission in 7 of the 10 rho-Oph objects, but only in one in Cha I. Using objects for which we have both a determination of Lacc from Halpha and a Pabeta detection, we show that the correlation between the Pabeta luminosity and luminosity Lacc, found by Muzerolle et al. (1998) for T Tauri stars in Taurus, extends to objects with mass approx 0.03 Msun; L(Pab) can be used to measure Lacc also in the substellar regime. The results were less conclusive for Brgamma, which was detected only in 2 objects, neither of which had an Halpha estimate of Macc. Using the relation between L(Pab) and Lacc we determined the accretion rate for all the objects in our sample (including those with no Halpha spectrum), more than doubling the number of substellar objects with known Macc. When plotted as a function of the mass of the central object together with data from the literature, our results confirm the trend of lower Macc for lower Mstar, although with a large spread. Some of the spread is probably due to an age effect; our very young objects in rho-Oph have on average an accretion rate at least one order of magnitude higher than objects of similar mass in older regions. As a side product, we found that the width of Halpha measured at 10% peak intensity is not only a qualitative indicator of accretion, but can be used to obtain a quantitative estimate of Macc over a large mass range, from T Tauri stars to brown dwarfs. Finally, we found that some of our objects show evidence of mass-loss.Comment: 11 pages, 8 figures, A&A in pres

    Modeling the Halpha line emission around classical T Tauri stars using magnetospheric accretion and disk wind models

    Full text link
    Spectral observations of classical T Tauri stars show a wide range of line profiles, many of which reveal signs of matter inflow and outflow. Halpha is the most commonly observed line profile due to its intensity, and it is highly dependent on the characteristics of the surrounding environment of these stars. Our aim is to analyze how the Halpha line profile is affected by the various parameters of our model which contains both the magnetospheric and disk wind contributions to the Halpha flux. We used a dipolar axisymmetric stellar magnetic field to model the stellar magnetosphere and a modified Blandford & Payne model was used in our disk wind region. A three-level atom with continuum was used to calculate the required Hydrogen level populations. We use the Sobolev approximation and a ray-by-ray method to calculate the integrated line profile. Through an extensive study of the model parameter space, we have investigated the contribution of many of the model parameters on the calculated line profiles. Our results show that the Halpha line is strongly dependent on the densities and temperatures inside the magnetosphere and the disk wind region. The bulk of the flux comes, most of the time, from the magnetospheric component for standard classical T Tauri stars parameters, but the disk wind contribution becomes more important as the mass accretion rate, the temperatures and densities inside the disk wind increase. We have also found that most of the disk wind contribution to the Halpha line is emitted at the innermost region of the disk wind. Models that take into consideration both inflow and outflow of matter are a necessity to fully understand and describe classical T Tauri stars.Comment: 15 pages, 9 figures, accepted for publication in Astronomy & Astrophysics. Revised version with English correction

    A Comprehensive Study of the L1551 IRS 5 Binary System

    Get PDF
    We model the Class I source L1551 IRS 5, adopting a flattened infalling envelope surrounding a binary disk system and a circumbinary disk. With our composite model, we calculate self-consistently the spectral energy distribution of each component of the L1551 IRS 5 system, using additional constraints from recent observations by ISO, the water ice feature from observations with SpeX, the SCUBA extended spatial brightness distribution at sub-mm wavelengths, and the VLA spatial intensity distributions at 7 mm of the binary disks. We analyze the sensitivity of our results to the various parameters involved. Our results show that a flattened envelope collapse model is required to explain simultaneously the large scale fluxes and the water ice and silicate features. On the other hand, we find that the circumstellar disks are optically thick in the millimeter range and are inclined so that their outer parts hide the emission along the line of sight from their inner parts. We also find that these disks have lower mass accretion rates than the infall rate of the envelope.Comment: 38 pages, 13 figures. To appear in ApJ (v586 April 1, 2003 issue

    Modeling Mid-Infrared Variability of Circumstellar Disks with Non-Axisymmetric Structure

    Full text link
    Recent mid-infrared observations of young stellar objects have found significant variations possibly indicative of changes in the structure of the circumstellar disk. Previous models of this variability have been restricted to axisymmetric perturbations in the disk. We consider simple models of a non-axisymmetric variation in the inner disk, such as a warp or a spiral wave. We find that the precession of these non-axisymmetric structures produce negligible flux variations but a change in the height of these structures can lead to significant changes in the mid-infrared flux. Applying these models to observations of the young stellar object LRLL 31 suggests that the observed variability could be explained by a warped inner disk with variable scale height. This suggests that some of the variability observed in young stellar objects could be explained by non-axisymmetric disturbances in the inner disk and this variability would be easily observable in future studies.Comment: 9 pages plus 16 figures and 1 appendix. Accepted to Ap

    SPITZER observations of the λ Orionis cluster. II. Disks around solar-type and low-mass stars

    Get PDF
    We present IRAC/MIPS Spitzer Space Telescope observations of the solar-type and the low-mass stellar population of the young (~5Myr) λ Orionis cluster. Combining optical and Two Micron All Sky Survey photometry, we identify 436 stars as probable members of the cluster. Given the distance (450 pc) and the age of the cluster, our sample ranges in mass from 2 M_⊙ to objects below the substellar limit. With the addition of the Spitzer mid-infrared data, we have identified 49 stars bearing disks in the stellar cluster. Using spectral energy distribution slopes, we place objects in several classes: non-excess stars (diskless), stars with optically thick disks, stars with “evolved disks” (with smaller excesses than optically thick disk systems), and “transitional disk” candidates (in which the inner disk is partially or fully cleared). The disk fraction depends on the stellar mass, ranging from ~6% for K-type stars (R_C − J 4). We confirm the dependence of disk fraction on stellar mass in this age range found in other studies. Regarding clustering levels, the overall fraction of disks in the λ Orionis cluster is similar to those reported in other stellar groups with ages normally quoted as ~5Myr

    Tracing the origins of permitted emission lines in RU Lupi down to AU scales

    Full text link
    Most of the observed emission lines and continuum excess from young accreting low mass stars (Classical T Tauri stars -- CTTSs) take place in the star-disk or inner disk region. These regions have a complex emission topology still largely unknown. In this paper the magnetospheric accretion and inner wind contributions to the observed permitted He and H near infrared (NIR) lines of the bright southern CTTS RU Lupi are investigated for the first time. Previous optical observations of RU Lupi showed a large H-alpha profile, due to the emission from a wind in the line wings, and a micro-jet detected in forbidden lines. We extend this analysis to NIR lines through seeing-limited high spectral resolution spectra taken with VLT/ISAAC, and adaptive optics (AO) aided narrow-band imaging and low spectral resolution spectroscopy with VLT/NACO. Using spectro-astrometric analysis we investigate the presence of extended emission down to very low spatial scales (a few AU). The HeI 10830 line presents a P Cygni profile whose absorption feature indicates the presence of an inner stellar wind. Moreover the spectro-astrometric analysis evidences the presence of an extended emission superimposed to the absorption feature and likely coming from the micro-jet detected in the optical. On the contrary, the origin of the Hydrogen Paschen and Brackett lines is difficult to address. We tried tentatively to explain the observed line profiles and flux ratios with both accretion and wind models showing the limits of both approaches. The lack of spectro-astrometric signal indicates that the HI emission is either compact or symmetric. Our analysis confirms the sensitivity of the HeI line to the presence of faint extended emission regions in the close proximity of the star.Comment: 11 pages, 4 figures, accepted for publication on A&

    Depletion of molecular gas by an accretion outburst in a protoplanetary disk

    Full text link
    We investigate new and archival 3-5 μ\mum high resolution (3\sim3 km s1^{-1}) spectroscopy of molecular gas in the inner disk of the young solar-mass star EX Lupi, taken during and after the strong accretion outburst of 2008. The data were obtained using the CRIRES spectrometer at the ESO Very Large Telescope in 2008 and 2014. In 2008, emission lines from CO, H2_{2}O, and OH were detected with broad profiles tracing gas near and within the corotation radius (0.02-0.3 AU). In 2014, the spectra display marked differences. The CO lines, while still detected, are much weaker, and the H2_{2}O and OH lines have disappeared altogether. At 3 μ\mum a veiled stellar photospheric spectrum is observed. Our analysis finds that the molecular gas mass in the inner disk has decreased by an order of magnitude since the outburst, matching a similar decrease in the accretion rate onto the star. We discuss these findings in the context of a rapid depletion of material accumulated beyond the disk corotation radius during quiescent periods, as proposed by models of episodic accretion in EXor type young stars.Comment: 6 pages, 4 figures, 1 table, accepted for publication in the Astrophysical Journal Letter

    Infrared Variability of Evolved Protoplanetary Disks: Evidence for Scale Height Variations in the Inner Disk

    Full text link
    We present the results of a multi-wavelength multi-epoch survey of five evolved protoplanetary disks in the IC 348 cluster that show significant infrared variability. Using 3-8micron and 24micron photometry along with 5-40micron spectroscopy from the Spitzer Space Telescope, as well as ground-based 0.8-5micron spectroscopy, optical spectroscopy and near-infrared photometry, covering timescales of days to years, we examine the variability in the disk, stellar and accretion flux. We find substantial variations (10-60%) at all infrared wavelengths on timescales of weeks to months for all of these young stellar objects. This behavior is not unique when compared to other cluster members and is consistent with changes in the structure of the inner disk, most likely scale height fluctuations on a dynamical timescale. Previous observations, along with our near-infrared photometry, indicate that the stellar fluxes are relatively constant; stellar variability does not appear to drive the large changes in the infrared fluxes. Based on our near-infrared spectroscopy of the Pa-beta and Br-gamma lines we find that the accretion rates are variable in most of the evolved disks but the overall rates are probably too small to cause the infrared variability. We discuss other possible physical causes for the variability, including the influence of a companion, magnetic fields threading the disk, and X-ray flares.Comment: Accepted to ApJ. 33 pages, emulate apj forma

    Unveiling the Structure of Pre-Transitional Disks

    Full text link
    In the past few years, several disks with inner holes that are empty of small dust grains have been detected and are known as transitional disks. Recently, Spitzer has identified a new class of "pre-transitional disks" with gaps; these objects have an optically thick inner disk separated from an optically thick outer disk by an optically thin disk gap. A near-infrared spectrum provided the first confirmation of a gap in the pre-transitional disk of LkCa 15 by verifying that the near-infrared excess emission in this object was due to an optically thick inner disk. Here we investigate the difference between the nature of the inner regions of transitional and pre-transitional disks using the same veiling-based technique to extract the near-infrared excess emission above the stellar photosphere. We show that the near-infrared excess emission of the previously identified pre-transitional disks of LkCa 15 and UX Tau A in Taurus as well as the newly identified pre-transitional disk of ROX 44 in Ophiuchus can be fit with an inner disk wall located at the dust destruction radius. We also model the broad-band SEDs of these objects, taking into account the effect of shadowing by the inner disk on the outer disk, considering the finite size of the star. The near-infrared excess continua of these three pre-transitional disks, which can be explained by optically thick inner disks, are significantly different from that of the transitional disks of GM Aur, whose near-infrared excess continuum can be reproduced by emission from sub-micron-sized optically thin dust, and DM Tau, whose near-infrared spectrum is consistent with a disk hole that is relatively free of small dust. The structure of pre-transitional disks may be a sign of young planets forming in these disks and future studies of pre-transitional disks will provide constraints to aid in theoretical modeling of planet formation.Comment: Accepted for publication in ApJ on May 10, 2010; 29 page

    Emission-line profile modelling of structured T Tauri magnetospheres

    Full text link
    We present hydrogen emission line profile models of magnetospheric accretion onto Classical T Tauri stars. The models are computed under the Sobolev approximation using the three-dimensional Monte Carlo radiative-transfer code TORUS. We have calculated four illustrative models in which the accretion flows are confined to azimuthal curtains - a geometry predicted by magneto-hydrodynamical simulations. Properties of the line profile variability of our models are discussed, with reference to dynamic spectra and cross-correlation images. We find that some gross characteristics of observed line profile variability are reproduced by our models, although in general the level of variability predicted is larger than that observed. We conclude that this excessive variability probably excludes dynamical simulations that predict accretion flows with low degrees of axisymmetry.Comment: 14 pages, 12 figures. Published in MNRA
    corecore