16,397 research outputs found

    Where have all the black holes gone?

    Get PDF
    We have calculated stationary models for accretion disks around super-massive black holes in galactic nuclei. Our models show that below a critical mass flow rate of ~3 10**-3 M_Edd advection will dominate the energy budget while above that rate all the viscously liberated energy is radiated. The radiation efficiency declines steeply below that critical rate. This leads to a clear dichotomy between AGN and normal galaxies which is not so much given by differences in the mass flow rate but by the radiation efficiency. At very low mass accretion rates below 5 10**-5 M_Edd synchrotron emission and Bremsstrahlung dominate the SED, while above 2 10**-4 M Edd the inverse Compton radiation from synchrotron seed photons produce flat to inverted SEDs from the radio to X-rays. Finally we discuss the implications of these findings for AGN duty cycles and the long-term AGN evolution.Comment: 7 pages, 5 figures, accepted for publication in A&

    Self-Similar Force-Free Wind From an Accretion Disk

    Get PDF
    We consider a self-similar force-free wind flowing out of an infinitely thin disk located in the equatorial plane. On the disk plane, we assume that the magnetic stream function PP scales as PRνP\propto R^\nu, where RR is the cylindrical radius. We also assume that the azimuthal velocity in the disk is constant: vϕ=Mcv_\phi = Mc, where M<1M<1 is a constant. For each choice of the parameters ν\nu and MM, we find an infinite number of solutions that are physically well-behaved and have fluid velocity c\leq c throughout the domain of interest. Among these solutions, we show via physical arguments and time-dependent numerical simulations that the minimum-torque solution, i.e., the solution with the smallest amount of toroidal field, is the one picked by a real system. For ν1\nu \geq 1, the Lorentz factor of the outflow increases along a field line as \gamma \approx M(z/\Rfp)^{(2-\nu)/2} \approx R/R_{\rm A}, where \Rfp is the radius of the foot-point of the field line on the disk and R_{\rm A}=\Rfp/M is the cylindrical radius at which the field line crosses the Alfven surface or the light cylinder. For ν<1\nu < 1, the Lorentz factor follows the same scaling for z/\Rfp < M^{-1/(1-\nu)}, but at larger distances it grows more slowly: \gamma \approx (z/\Rfp)^{\nu/2}. For either regime of ν\nu, the dependence of γ\gamma on MM shows that the rotation of the disk plays a strong role in jet acceleration. On the other hand, the poloidal shape of a field line is given by z/\Rfp \approx (R/\Rfp)^{2/(2-\nu)} and is independent of MM. Thus rotation has neither a collimating nor a decollimating effect on field lines, suggesting that relativistic astrophysical jets are not collimated by the rotational winding up of the magnetic field.Comment: 21 pages, 15 figures, accepted to MNRA

    One pion events by atmospheric neutrinos: A three flavor analysis

    Get PDF
    We study the one-pion events produced via neutral current (NC) and charged current (CC) interactions by the atmospheric neutrinos. We analyze the ratios of these events in the framework of oscillations between three neutrino flavors. The ratios of the CC events induced by νe\nu_e to that of the NC events and a similar ratio defined with νμ\nu_\mu help us in distinguishing the different regions of the neutrino parameter space.Comment: 14 pages, 4 figures (separate postscript files

    Lifshitz-like systems and AdS null deformations

    Full text link
    Following arXiv:1005.3291 [hep-th], we discuss certain lightlike deformations of AdS5×X5AdS_5\times X^5 in Type IIB string theory sourced by a lightlike dilaton Φ(x+)\Phi(x^+) dual to the N=4 super Yang-Mills theory with a lightlike varying gauge coupling. We argue that in the case where the x+x^+-direction is noncompact, these solutions describe anisotropic 3+1-dim Lifshitz-like systems with a potential in the x+x^+-direction generated by the lightlike dilaton. We then describe solutions of this sort with a linear dilaton. This enables a detailed calculation of 2-point correlation functions of operators dual to bulk scalars and helps illustrate the spatial structure of these theories. Following this, we discuss a nongeometric string construction involving a compactification along the x+x^+-direction of this linear dilaton system. We also point out similar IIB axionic solutions. Similar bulk arguments for x+x^+-noncompact can be carried out for deformations of AdS4×X7AdS_4\times X^7 in M-theory.Comment: Latex, 20pgs, 1 eps fig; v2. references added; v3. minor clarifications added, to appear in PR

    Solar Neutrinos and the Eclipse Effect

    Full text link
    The solar neutrino counting rate in a real time detector like Super--Kamiokanda, SNO, or Borexino is enhanced due to neutrino oscillations in the Moon during a partial or total solar eclipse. The enhancement is calculated as a function of the neutrino parameters in the case of three flavor mixing. This enhancement, if seen, can further help to determine the neutrino parameters.Comment: 24 Pages Revtex, 8 figures as one ps file. To appear in Phys. Rev. D; Some typos corrected and a reference adde

    Self similar Barkhausen noise in magnetic domain wall motion

    Full text link
    A model for domain wall motion in ferromagnets is analyzed. Long-range magnetic dipolar interactions are shown to give rise to self-similar dynamics when the external magnetic field is increased adiabatically. The power spectrum of the resultant Barkhausen noise is of the form 1/ωα1/\omega^\alpha, where α1.5\alpha\approx 1.5 can be estimated from the critical exponents for interface depinning in random media.Comment: 7 pages, RevTex. To appear in Phys. Rev. Let

    The Changing Fractions of Type Ia Supernova NUV-Optical Subclasses with Redshift

    Get PDF
    UV and optical photometry of Type Ia supernovae (SNe Ia) at low redshift have revealed the existence of two distinct color groups, NUV-red and NUV-blue events. The color curves differ primarily by an offset, with the NUV-blue u- color curves bluer than the NUV-red curves by 0.4 mag. For a sample of 23 low-z SNe~Ia observed with Swift, the NUV-red group dominates by a ratio of 2:1. We compare rest-frame UV/optical spectrophotometry of intermediate and high-z SNe Ia with UVOT photometry and HST spectrophotometry of low-z SNe Ia, finding that the same two color groups exist at higher-z, but with the NUV-blue events as the dominant group. Within each red/blue group, we do not detect any offset in color for different redshifts, providing insight into how SN~Ia UV emission evolves with redshift. Through spectral comparisons of SNe~Ia with similar peak widths and phase, we explore the wavelength range that produces the UV/OPT color differences. We show that the ejecta velocity of NUV-red SNe is larger than that of NUV-blue objects by roughly 12% on average. This velocity difference can explain some of the UV/optical color difference, but differences in the strengths of spectral features seen in meanspectra require additional explanation. Because of the different b-v colors for these groups, NUV-red SNe will have their extinction underestimated using common techniques. This, in turn, leads to under-estimation of the optical luminosity of the NUV-blue SNe~Ia, in particular, for the high-redshift cosmological sample. Not accounting for this effect should thus produce a distance bias that increases with redshift and could significantly bias measurements of cosmological parameters.Comment: submitted to Ap

    Free energies in the presence of electric and magnetic fields

    Full text link
    We discuss different free energies for materials in static electric and magnetic fields. We explain what the corresponding Hamiltonians are, and describe which choice gives rise to which result for the free energy change, dF, in the thermodynamic identity. We also discuss which Hamiltonian is the most appropriate for calculations using statistical mechanics, as well as the relationship between the various free energies and the "Landau function", which has to be minimized to determine the equilibrium polarization or magnetization, and is central to Landau's theory of second order phase transitions
    corecore