537 research outputs found
Targeting burn prevention in the pediatric population : a prospective study of children's burns in the Lausanne area
Rapport de synthèse :
But de l'étude : Les accidents domestiques représentent un problème significatif en médecine pédiatrique. Le but de cette étude est de mieux comprendre les mécanismes et causes des brûlures afin de pouvoir cibler la prévention.
Méthode : Il s'agit d'une étude prospective d'une durée d'une année, d'Août 2004 à Août 2005. Les patients ayant consulté pour des brûlures à l'Hôpital de l'Enfance de Lausanne (HEL) ou au CHUV ont été répertoriés. Le mécanisme et les circonstances des brûlures ont été analysées, de même que l'environnement et les données psycho-sociales.
Résultats : huitante-neuf patients ont été inclus dans l'étude, âgés de 2 mois à 15 ans. Septante-huit pour cent des patients avaient moins de 5 ans. Plus de la moitié étaient des garçons. Les brûlures par échaudement prédominaient. Nous n'avons pas pu mettre en évidence d'incidence augmentée de brûlures chez des patients de familles immigrées ou de niveau social bas. Dans la majorité des cas, un adulte était présent au moment de l'accident.
Conclusion : Si l'on devait établir un profil type de l'enfant à risque de se brûler dans notre région, il s'agirait d'un garçon âgé de 15 mois-5ans, se brûlant en se versant une tasse de liquide chaud sur la main, à son domicile, en présence de l'un ou de ses deux parents. Le message de prévention devrait donc s'adresser directement aux parents, toutes nationalités et niveau social confondus afin de leur expliquer les dangers de brûlures présents au quotidien à leur domicile. A chaque contrôle, les pédiatres devraient parler des accidents domestiques aux parents. En insistant sur les dangers que représentent les tasses de café, la porte du four et la plaque de la cuisinière, qui sont des éléments du quotidien et qui méritent une attention à chaque utilisation. Les brûlures chez le petit enfant pourraient ainsi être fortement réduites
Weighted Radon transforms for which the Chang approximate inversion formula is precise
We describe all weighted Radon transforms on the plane for which the Chang
approximate inversion formula is precise. Some subsequent results, including
the Cormack type inversion for these transforms, are also given
Joining wood by friction welding
At the Chair of Timber Constructions of the Swiss Federal Institute of Technology in Lausanne (EPFL) tests were carried out to join wooden work pieces by friction welding without any additional welding deposit. It could be determined that this kind of technology, which is mainly used for thermoplastics and metal, can also be applied to wood. Tests were carried out to determine the influence of the processing parameters like welding pressure, frequency and amplitude of the circular movement on the welding process and the input of energy at the interface. In addition, the resistance of the joint was examined. The development of the shear strength during solidification of the interface as well as the shear strength achievable after a complete solidification of the interface was the objective of the examinations. Furthermore, the microstructure of the welded joint was studied to reveal the manner in which the thermally decomposed wood forms the connection between the welded piece
Mapping Atomic Motions with Electrons: Toward the Quantum Limit to Imaging Chemistry
Recent advances in ultrafast electron and X-ray diffraction have pushed imaging of structural dynamics into the femtosecond time domain, that is, the fundamental time scale of atomic motion. New physics can be reached beyond the scope of traditional diffraction or reciprocal space imaging. By exploiting the high time resolution, it has been possible to directly observe the collapse of nearly innumerable possible nuclear motions to a few key reaction modes that direct chemistry. It is this reduction in dimensionality in the transition state region that makes chemistry a transferable concept, with the same class of reactions being applicable to synthetic strategies to nearly arbitrary levels of complexity. The ability to image the underlying key reaction modes has been achieved with resolution to relative changes in atomic positions to better than 0.01 Å, that is, comparable to thermal motions. We have effectively reached the fundamental space-time limit with respect to the reaction energetics and imaging the acting forces. In the process of ensemble measured structural changes, we have missed the quantum aspects of chemistry. This perspective reviews the current state of the art in imaging chemistry in action and poses the challenge to access quantum information on the dynamics. There is the possibility with the present ultrabright electron and X-ray sources, at least in principle, to do tomographic reconstruction of quantum states in the form of a Wigner function and density matrix for the vibrational, rotational, and electronic degrees of freedom. Accessing this quantum information constitutes the ultimate demand on the spatial and temporal resolution of reciprocal space imaging of chemistry. Given the much shorter wavelength and corresponding intrinsically higher spatial resolution of current electron sources over X-rays, this Perspective will focus on electrons to provide an overview of the challenge on both the theory and the experimental fronts to extract the quantum aspects of molecular dynamics
Single-Scattering Optical Tomography: Simultaneous Reconstruction of Scattering and Absorption
We demonstrate that simultaneous reconstruction of scattering and absorption
of a mesoscopic system using angularly-resolved measurements of scattered light
intensity is possible. Image reconstruction is realized based on the algebraic
inversion of a generalized Radon transform relating the scattering and
absorption coefficients of the medium to the measured light intensity and
derived using the single-scattering approximation to the radiative transport
equation.Comment: This is a sequel to physics/070311
On the injectivity of the circular Radon transform arising in thermoacoustic tomography
The circular Radon transform integrates a function over the set of all
spheres with a given set of centers. The problem of injectivity of this
transform (as well as inversion formulas, range descriptions, etc.) arises in
many fields from approximation theory to integral geometry, to inverse problems
for PDEs, and recently to newly developing types of tomography. The article
discusses known and provides new results that one can obtain by methods that
essentially involve only the finite speed of propagation and domain dependence
for the wave equation.Comment: To appear in Inverse Problem
Exponential instability in the fractional Calder\'on problem
In this note we prove the exponential instability of the fractional
Calder\'on problem and thus prove the optimality of the logarithmic stability
estimate from \cite{RS17}. In order to infer this result, we follow the
strategy introduced by Mandache in \cite{M01} for the standard Calder\'on
problem. Here we exploit a close relation between the fractional Calder\'on
problem and the classical Poisson operator. Moreover, using the construction of
a suitable orthonormal basis, we also prove (almost) optimality of the Runge
approximation result for the fractional Laplacian, which was derived in
\cite{RS17}. Finally, in one dimension, we show a close relation between the
fractional Calder\'on problem and the truncated Hilbert transform.Comment: 17 page
Multiple Projection Optical Diffusion Tomography with Plane Wave Illumination
We describe a new data collection scheme for optical diffusion tomography in
which plane wave illumination is combined with multiple projections in the slab
imaging geometry. Multiple projection measurements are performed by rotating
the slab around the sample. The advantage of the proposed method is that the
measured data can be much more easily fitted into the dynamic range of most
commonly used detectors. At the same time, multiple projections improve image
quality by mutually interchanging the depth and transverse directions, and the
scanned (detection) and integrated (illumination) surfaces. Inversion methods
are derived for image reconstructions with extremely large data sets. Numerical
simulations are performed for fixed and rotated slabs
Towards a liquid Argon TPC without evacuation: filling of a 6 m^3 vessel with argon gas from air to ppm impurities concentration through flushing
In this paper we present a successful experimental test of filling a volume
of 6 m with argon gas, starting from normal ambient air and reducing the
impurities content down to few parts per million (ppm) oxygen equivalent. This
level of contamination was directly monitored measuring the slow component of
the scintillation light of the Ar gas, which is sensitive to {\it all} sources
of impurities affecting directly the argon scintillation.Comment: 9 pages, 6 figures, to appear in Proc. 1st International Workshop
towards the Giant Liquid Argon Charge Imaging Experiment (GLA2010), Tsukuba,
March 201
- …
