176 research outputs found

    One step creation of multifunctional 3D architectured hydrogels inducing bone regeneration

    Get PDF
    Structured hydrogels showing form stability and elastic properties individually tailorable on different length scales are accessible in a one-step process. They support cell adhesion and differentiation and display growing pore size during degradation. In vivo experiments demonstrate their efficacy in biomaterial-induced bone regeneration, not requiring addition of cells or growth factors

    Turmeric and Its Major Compound Curcumin on Health: Bioactive Effects and Safety Profiles for Food, Pharmaceutical, Biotechnological and Medicinal Applications

    Get PDF
    Curcumin, a yellow polyphenolic pigment from the Curcuma longa L. (turmeric) rhizome, has been used for centuries for culinary and food coloring purposes, and as an ingredient for various medicinal preparations, widely used in Ayurveda and Chinese medicine. In recent decades, their biological activities have been extensively studied. Thus, this review aims to offer an in-depth discussion of curcumin applications for food and biotechnological industries, and on health promotion and disease prevention, with particular emphasis on its antioxidant, anti-inflammatory, neuroprotective, anticancer, hepatoprotective, and cardioprotective effects. Bioavailability, bioefficacy and safety features, side effects, and quality parameters of curcumin are also addressed. Finally, curcumin’s multidimensional applications, food attractiveness optimization, agro-industrial procedures to offset its instability and low bioavailability, health concerns, and upcoming strategies for clinical application are also covered

    Ethylene oxide sterilization of electrospun poly(l-lactide)/poly(d-lactide) core/shell nanofibers

    No full text
    Abstract The application of polymers in medicine requires sterilization while retaining material structure and properties. This demands detailed analysis, which we show exemplarily for the sterilization of PLLA/PDLA core–shell nanofibers with ethylene oxide (EtO). The electrospun patch was exposed to EtO gas (6 vol% in CO2, 1.7 bar) for 3 h at 45 °C and 75% rel. humidity, followed by degassing under pressure/vacuum cycles for 12 h. GC–MS analysis showed that no residual EtO was retained. Fiber diameters (~ 520 ± 130 nm) of the patches remained constant as observed by electron microscopy. Young’s modulus slightly increased and the elongation at break slightly decreased, determined at 37 °C. No changes were detected in 1H-NMR spectra, in molar mass distribution (GPC) or in crystallinity measured for annealed samples with comparable thermal history (Wide Angle X-Ray Scattering). Altogether, EtO emerged as suitable sterilization method for polylactide nanofibers with core–shell morphology. Graphic abstract </jats:sec

    Ethylene oxide sterilization of electrospun poly(L-lactide)/poly(D-lactide) core/shell nanofibers

    No full text
    The application of polymers in medicine requires sterilization while retaining material structure and properties. This demands detailed analysis, which we show exemplarily for the sterilization of PLLA/PDLA core-shell nanofibers with ethylene oxide (EtO). The electrospun patch was exposed to EtO gas (6 vol% in CO2, 1.7 bar) for 3 h at 45 degrees C and 75% rel. humidity, followed by degassing under pressure/vacuum cycles for 12 h. GC-MS analysis showed that no residual EtO was retained. Fiber diameters (similar to 520 +/- 130 nm) of the patches remained constant as observed by electron microscopy. Young's modulus slightly increased and the elongation at break slightly decreased, determined at 37 degrees C. No changes were detected in H-1-NMR spectra, in molar mass distribution (GPC) or in crystallinity measured for annealed samples with comparable thermal history (Wide Angle X-Ray Scattering). Altogether, EtO emerged as suitable sterilization method for polylactide nanofibers with core-shell morphology
    corecore