2,736 research outputs found
Calibrating and Stabilizing Spectropolarimeters with Charge Shuffling and Daytime Sky Measurements
Well-calibrated spectropolarimetry studies at resolutions of 10,000 with
signal-to-noise ratios (SNRs) better than 0.01\% across individual line
profiles, are becoming common with larger aperture telescopes.
Spectropolarimetric studies require high SNR observations and are often limited
by instrument systematic errors. As an example, fiber-fed spectropolarimeters
combined with advanced line-combination algorithms can reach statistical error
limits of 0.001\% in measurements of spectral line profiles referenced to the
continuum. Calibration of such observations is often required both for
cross-talk and for continuum polarization. This is not straightforward since
telescope cross-talk errors are rarely less than 1\%. In solar
instruments like the Daniel K. Inouye Solar Telescope (DKIST), much more
stringent calibration is required and the telescope optical design contains
substantial intrinsic polarization artifacts. This paper describes some
generally useful techniques we have applied to the HiVIS spectropolarimeter at
the 3.7m AEOS telescope on Haleakala. HiVIS now yields accurate polarized
spectral line profiles that are shot-noise limited to 0.01\% SNR levels at our
full spectral resolution of 10,000 at spectral sampling of 100,000. We
show line profiles with absolute spectropolarimetric calibration for cross-talk
and continuum polarization in a system with polarization cross-talk levels of
essentially 100\%. In these data the continuum polarization can be recovered to
one percent accuracy because of synchronized charge-shuffling model now working
with our CCD detector. These techniques can be applied to other
spectropolarimeters on other telescopes for both night and day-time
applications such as DKIST, TMT and ELT which have folded non-axially symmetric
foci.Comment: Accepted to A&
Thermonuclear .Ia Supernovae from Helium Shell Detonations: Explosion Models and Observables
During the early evolution of an AM CVn system, helium is accreted onto the
surface of a white dwarf under conditions suitable for unstable thermonuclear
ignition. The turbulent motions induced by the convective burning phase in the
He envelope become strong enough to influence the propagation of burning fronts
and may result in the onset of a detonation. Such an outcome would yield
radioactive isotopes and a faint rapidly rising thermonuclear ".Ia" supernova.
In this paper, we present hydrodynamic explosion models and observable outcomes
of these He shell detonations for a range of initial core and envelope masses.
The peak UVOIR bolometric luminosities range by a factor of 10 (from 5e41 -
5e42 erg/s), and the R-band peak varies from M_R,peak = -15 to -18. The rise
times in all bands are very rapid (<10 d), but the decline rate is slower in
the red than the blue due to a secondary near-IR brightening. The
nucleosynthesis primarily yields heavy alpha-chain elements (40Ca through 56Ni)
and unburnt He. Thus, the spectra around peak light lack signs of intermediate
mass elements and are dominated by CaII and TiII features, with the caveat that
our radiative transfer code does not include the non-thermal effects necessary
to produce He features.Comment: Accepted for publication in The Astrophysical Journal; 9 pages, 9
figures; v2: Minor changes to correct typos and clarify conten
An Ecological Study of the Lagoons Surrounding the John F. Kennedy Space Center, Brevard County, Florida
The studies reported here are the result of a three year effort to define the major biological, microbiological, chemical and geological characteristics of the water of the Indian River lagoon around the Kennedy Space Center and to determine the movements of those waters within and between the various basins. This work was the result of a jointly funded agreement between the Florida Institute of Technology and John F. Kennedy Space Center, NASA under NASA Grant NGR 10-015-008, dated April 11, 1972. This cost sharing grant was renewed for each of two successive years. Sampling operations were terminated August 31, 1975
Spectra and Light Curves of Failed Supernovae
Astronomers have proposed a number of mechanisms to produce supernova
explosions. Although many of these mechanisms are now not considered primary
engines behind supernovae, they do produce transients that will be observed by
upcoming ground-based surveys and NASA satellites. Here we present the first
radiation-hydrodynamics calculations of the spectra and light curves from three
of these "failed" supernovae: supernovae with considerable fallback, accretion
induced collapse of white dwarfs, and energetic helium flashes (also known as
type .Ia supernovae).Comment: 33 pages, 14 figure
Efficacy of an 8-Week Concurrent Strength and Endurance Training Programme on Hand Cycling Performance
The aim of the present study was to investigate the effects of an 8-week concurrent strength and endurance training programme in comparison to endurance training only on several key determinants of hand cycling performance. Five H4 and five H3 classified hand cyclists with at least one year’s hand cycling training history consented to participate in the study. Subjects underwent a battery of tests to establish body mass, body composition, VO2peak, maximum aerobic power, gross mechanical efficiency, maximal upper body strength, and 30 km time trial performance. Subjects were matched into pairs based upon 30 km time trial performance and randomly allocated to either a concurrent strength and endurance or endurance training only, intervention group. Following an 8-week training programme based upon a conjugated block periodisation model, subjects completed a second battery of tests. A mixed model, 2-way analysis of variance (ANOVA) revealed no significant changes between groups. However, the calculation of effect sizes (ES) revealed that both groups demonstrated a positive improvement in most physiological and performance measures with subjects in the concurrent group demonstrating a greater magnitude of improvement in body composition (ES -0.80 vs. -0.22) maximal aerobic power (ES 0.97 vs. 0.28), gross mechanical efficiency (ES 0.87 vs. 0.63), bench press 1 repetition maximum (ES 0.53 vs. 0.33), seated row 1 repetition maximum (ES 1.42 vs. 0.43), and 30 km time trial performance (ES -0.66 vs. -0.30). In comparison to endurance training only, an 8-week concurrent training intervention based upon a conjugated block periodisation model appears to be a more effective training regime for improving the performance capabilities of hand cyclists
A hypothetico-deductive approach to assessing the social function of chemical signalling in a non-territorial solitary carnivore
The function of chemical signalling in non-territorial solitary carnivores is still relatively unclear. Studies on territorial solitary and social carnivores have highlighted odour capability and utility, however the social function of chemical signalling in wild carnivore populations operating dominance hierarchy social systems has received little attention. We monitored scent marking and investigatory behaviour of wild brown bears Ursus arctos, to test multiple hypotheses relating to the social function of chemical signalling. Camera traps were stationed facing bear ‘marking trees’ to document behaviour by different age sex classes in different seasons. We found evidence to support the hypothesis that adult males utilise chemical signalling to communicate dominance to other males throughout the non-denning period. Adult females did not appear to utilise marking trees to advertise oestrous state during the breeding season. The function of marking by subadult bears is somewhat unclear, but may be related to the behaviour of adult males. Subadults investigated trees more often than they scent marked during the breeding season, which could be a result of an increased risk from adult males. Females with young showed an increase in marking and investigation of trees outside of the breeding season. We propose the hypothesis that females engage their dependent young with marking trees from a young age, at a relatively ‘safe’ time of year. Memory, experience, and learning at a young age, may all contribute towards odour capabilities in adult bears
Synthesis of toxyloxanthone B
A synthesis of the naturally occurring xanthone toxyloxanthone B is described, in which the key step is the regioselective addition of a methyl salicylate to a substituted benzyne followed by cyclization of the intermediate aryl anion to form the xanthone, the regiochemistry of the aryne addition being confirmed by X-ray crystallography. Subsequent introduction of the pyran ring by [3,3]-rearrangement and deprotection completed the synthesi
Hydrophobic residues at position 10 of α-conotoxin PnIA influence subtype selectivity between α7 and α3β2 neuronal nicotinic acetylcholine receptors
Neuronal nicotinic acetylcholine receptors (nAChRs) are a diverse class of ligand-gated ion channels involved in neurological conditions such as neuropathic pain and Alzheimer's disease. α-Conotoxin [A10L]PnIA is a potent and selective antagonist of the mammalian α7 nAChR with a key binding interaction at position 10. We now describe a molecular analysis of the receptor-ligand interactions that determine the role of position 10 in determining potency and selectivity for the α7 and α3β2 nAChR subtypes. Using electrophysiological and radioligand binding methods on a suite of [A10L]PnIA analogs we observed that hydrophobic residues in position 10 maintained potency at both subtypes whereas charged or polar residues abolished α7 binding. Molecular docking revealed dominant hydrophobic interactions with several α7 and α3β2 receptor residues via a hydrophobic funnel. Incorporation of norleucine (Nle) caused the largest (8-fold) increase in affinity for the α7 subtype (Ki = 44 nM) though selectivity reverted to α3β2 (IC50 = 0.7 nM). It appears that the placement of a single methyl group determines selectivity between α7 and α3β2 nAChRs via different molecular determinants
Polymerase manager protein UmuD directly regulates Escherichia coli DNA polymerase III α binding to ssDNA
Replication by Escherichia coli DNA polymerase III is disrupted on encountering DNA damage. Consequently, specialized Y-family DNA polymerases are used to bypass DNA damage. The protein UmuD is extensively involved in modulating cellular responses to DNA damage and may play a role in DNA polymerase exchange for damage tolerance. In the absence of DNA, UmuD interacts with the α subunit of DNA polymerase III at two distinct binding sites, one of which is adjacent to the single-stranded DNA-binding site of α. Here, we use single molecule DNA stretching experiments to demonstrate that UmuD specifically inhibits binding of α to ssDNA. We predict using molecular modeling that UmuD residues D91 and G92 are involved in this interaction and demonstrate that mutation of these residues disrupts the interaction. Our results suggest that competition between UmuD and ssDNA for α binding is a new mechanism for polymerase exchange
- …
