472 research outputs found

    Temporal stability and change in the social call repertoire of migrating humpback whales

    Get PDF
    Quantifying the stability of a species vocal repertoire is fundamental for further investigations into repertoire function and geographic variation. Changes to the repertoire of sounds used in the song displays of male humpback whales have been well studied. In contrast, little is known about the stability of this species' non-song vocal calls. The stability of the social call repertoire of east Australian humpback whales was investigated from 1997, 2003-2004, and 2008. Out of 46 qualitatively defined call types, 19 were classified as "song-unit calls" that tended to change with the song, and 15 were "inconsistent" and only found in one or two years. Twelve call types were "stable" and present in all years and were commonly produced (64.2% of calls). Stable calls tended to vary in some of the measured call parameters but there was no clear trend between years. This result could indicate that minor changes to calls are not permanent, but reflect individual differences in call production or the graded nature of calls within different social environments. This research has clearly identified stable calls in the call repertoire of humpback whales and while their function is not well understood, their stability suggests an important role in social interactions

    Evidence of a Lombard response in migrating humpback whales (Megaptera novaeangliae)

    Get PDF
    The Lombard reflex is an increase in the subject's vocal levels in response to increased noise levels. This functions to maintain an adequate signal-to-noise ratio at the position of the receiver when noise levels vary. While it has been demonstrated in a small number of mammals and birds including some whales, it has not yet been shown to occur in one of the most vocal species of baleen whale, the humpback whale (Megaptera novaeangliae). Humpback whales were simultaneously visually and acoustically tracked (using an array of calibrated hydrophone buoys) as they migrated southward. Source levels of social vocalizations were estimated from measured received levels and a site-specific empirical sound propagation model developed. In total, 226 social vocalizations from 16 passing groups of whales were selected for final analysis. Noise levels were predominantly wind-dependent (from sea surface motion) and ranged from 81 to 108 dB re 1 mu Pa in the 36Hz-2.8 kHz band. Vocalization source levels increased by 0.9 dB for every 1 dB increase in wind-dependent background noise levels, with source levels (at 1 m) being maintained similar to 60 dB above the noise level. (C) 2014 Acoustical Society of America

    Source levels of social sounds in migrating humpback whales (Megaptera novaeangliae)

    Get PDF
    The source level of an animal sound is important in communication, since it affects the distance over which the sound is audible. Several measurements of source levels of whale sounds have been reported, but the accuracy of many is limited because the distance to the source and the acoustic transmission loss were estimated rather than measured. This paper presents measurements of source levels of social sounds (surface-generated and vocal sounds) of humpback whales from a sample of 998 sounds recorded from 49 migrating humpback whale groups. Sources were localized using a wide baseline five hydrophone array and transmission loss was measured for the site. Social vocalization source levels were found to range from 123 to 183 dB re 1 mu Pa @ 1 m with a median of 158 dB re 1 mu Pa @ 1 m. Source levels of surface-generated social sounds ("breaches" and "slaps") were narrower in range (133 to 171 dB re 1 mu Pa @ 1 m) but slightly higher in level (median of 162 dB re 1 mu Pa @ 1 m) compared to vocalizations. The data suggest that group composition has an effect on group vocalization source levels in that singletons and mother-calf-singing escort groups tend to vocalize at higher levels compared to other group compositions. VC 2013 Acoustical Society of America

    Quantifying humpback whale song sequences to understand the dynamics of song exchange at the ocean basin scale

    Get PDF
    Humpback whales have a continually evolving vocal sexual display, or "song," that appears to undergo both evolutionary and "revolutionary" change. All males within a population adhere to the current content and arrangement of the song. Populations within an ocean basin share similarities in their songs; this sharing is complex as multiple variations of the song (song types) may be present within a region at any one time. To quantitatively investigate the similarity of song types, songs were compared at both the individual singer and population level using the Levenshtein distance technique and cluster analysis. The highly stereotyped sequences of themes from the songs of 211 individuals from populations within the western and central South Pacific region from 1998 through 2008 were grouped together based on the percentage of song similarity, and compared to qualitatively assigned song types. The analysis produced clusters of highly similar songs that agreed with previous qualitative assignments. Each cluster contained songs from multiple populations and years, confirming the eastward spread of song types and their progressive evolution through the study region. Quantifying song similarity and exchange will assist in understanding broader song dynamics and contribute to the use of vocal displays as population identifiers

    Information theory analysis of Australian humpback whale song

    Get PDF
    Songs produced by migrating whales were recorded off the coast of Queensland, Australia, over six consecutive weeks in 2003. Forty-eight independent song sessions were analyzed using information theory techniques. The average length of the songs estimated by correlation analysis was approximately 100 units, with song sessions lasting from 300 to over 3100 units. Song entropy, a measure of structural constraints, was estimated using three different methodologies: (1) the independently identically distributed model, (2) a first-order Markov model, and (3) the nonparametric sliding window match length (SWML) method, as described by Suzuki et al. [(2006). “Information entropy of humpback whale song,” J. Acoust. Soc. Am. 119, 1849–1866]. The analysis finds that the song sequences of migrating Australian whales are consistent with the hierarchical structure proposed by Payne and McVay [(1971). “Songs of humpback whales,” Science 173, 587–597], and recently supported mathematically by Suzuki et al. (2006) for singers on the Hawaiian breeding grounds. Both the SWML entropy estimates and the song lengths for the Australian singers in 2003 were lower than that reported by Suzuki et al. (2006) for Hawaiian whales in 1976–1978; however, song redundancy did not differ between these two populations separated spatially and temporally. The average total information in the sequence of units in Australian song was approximately 35 bits/song. Aberrant songs (8%) yielded entropies similar to the typical songs

    Recruitment of TBK1 to cytosol‐invading Salmonella induces WIPI2‐dependent antibacterial autophagy

    Get PDF
    Mammalian cells deploy autophagy to defend their cytosol against bacterial invaders. Anti-bacterial autophagy relies on the core autophagy machinery, cargo receptors, and "eat-me" signals such as galectin-8 and ubiquitin that label bacteria as autophagy cargo. Anti-bacterial autophagy also requires the kinase TBK1, whose role in autophagy has remained enigmatic. Here we show that recruitment of WIPI2, itself essential for anti-bacterial autophagy, is dependent on the localization of catalytically active TBK1 to the vicinity of cytosolic bacteria. Experimental manipulation of TBK1 recruitment revealed that engagement of TBK1 with any of a variety of Salmonella-associated "eat-me" signals, including host-derived glycans and K48- and K63-linked ubiquitin chains, suffices to restrict bacterial proliferation. Promiscuity in recruiting TBK1 via independent signals may buffer TBK1 functionality from potential bacterial antagonism and thus be of evolutionary advantage to the host

    Photo-identification confirms that humpback whales (Megaptera novaeangliae) from eastern Australia migrate past New Zealand but indicates low levels of interchange with breeding grounds of Oceania

    Get PDF
    Recent photo-identification and genetic studies have identified at least five discrete breeding populations in Australia and Oceania: western Australia (D), eastern Australia (E (i)), New Caledonia (E (ii)), Tonga (E (iii)), French Polynesia and the Cook Islands (F). Also evident are low levels of intermingling among breeding populations consistent with the degree of genetic differentiation. Photo-identification has confirmed linkages between Area V feeding areas and eastern Australia breeding grounds and one genotype match has been reported between Area V feeding areas and Oceania breeding grounds. Recent abundance estimates show strong increases in the eastern Australian population, and some recovery in the New Caledonia and Tonga populations, but with little evidence of recovery at other known Oceania breeding grounds or New Zealand. Studies to date have provided no conclusive evidence of the migratory destination of humpback whales passing through New Zealand waters en route between Antarctic feeding areas and tropical breeding grounds. Photo-identification comparisons were undertaken between humpback whale fluke catalogues from eastern Australia (EA, 1315), Oceania east (OE, 513), Oceania west (OW, 166) and New Zealand (NZ, 13). Five matches were found between OE/OW, four matches between OW/EA and three matches between NZ/EA. The data are used to investigate and discuss the migratory destination and breeding ground migratory terchange of humpback whales travelling through New Zealand waters. The data confirm that humpback whales with site fidelity to eastern Australia migrate past New Zealand including through the Cook Strait and Foveaux Strait

    Interaction between Bluetongue virus outer capsid protein VP2 and vimentin is necessary for virus egress

    Get PDF
    BACKGROUND: The VP2 outer capsid protein Bluetongue Virus (BTV) is responsible for receptor binding, haemagglutination and eliciting host-specific immunity. However, the assembly of this outer capsid protein on the transcriptionally active viral core would block transcription of the virus. Thus assembly of the outer capsid on the core particle must be a tightly controlled process during virus maturation. Earlier studies have detected mature virus particles associated with intermediate filaments in virus infected cells but the viral determinant for this association and the effect of disrupting intermediate filaments on virus assembly and release are unknown. RESULTS: In this study it is demonstrated that BTV VP2 associates with vimentin in both virus infected cells and in the absence of other viral proteins. Further, the determinants of vimentin localisation are mapped to the N-terminus of the protein and deletions of aminio acids between residues 65 and 114 are shown to disrupt VP2-vimentin association. Site directed mutation also reveals that amino acid residues Gly 70 and Val 72 are important in the VP2-vimentin association. Mutation of these amino acids resulted in a soluble VP2 capable of forming trimeric structures similar to unmodified protein that no longer associated with vimentin. Furthermore, pharmacological disruption of intermediate filaments, either directly or indirectly through the disruption of the microtubule network, inhibited virus release from BTV infected cells. CONCLUSION: The principal findings of the research are that the association of mature BTV particles with intermediate filaments are driven by the interaction of VP2 with vimentin and that this interaction contributes to virus egress. Furthermore, i) the N-terminal 118 amino acids of VP2 are sufficient to confer vimentin interaction. ii) Deletion of amino acids 65–114 or mutation of amino acids 70–72 to DVD abrogates vimentin association. iii) Finally, disruption of vimentin structures results in an increase in cell associated BTV and a reduction in the amount of released virus from infected cells

    Network analysis reveals underlying syntactic features in a vocally learnt mammalian display, humpback whale song

    Get PDF
    J.A.A. was funded by an Australian Government Research Training Program Scholarship and the Australian American Association University of Queensland Fellowship. E.C.G. was funded by a Royal Society Newton International Fellowship and a Royal Society University Research Fellowship. HARC was funded by the US Office of Naval Research, the Australian Defence Science and Technology Organisation, and the Australian Marine Mammal Centre. BRAHSS was funded by the E&P Sound and Marine Life Joint Industry Programme and the US Bureau of Ocean Energy Management.Vocal communication systems have a set of rules that govern the arrangement of acoustic signals, broadly defined as ‘syntax’. However, there is a limited understanding of potentially shared or analogous rules across vocal displays in different taxa. Recent work on songbirds has investigated syntax using network-based modelling. This technique quantifies features such as connectivity (adjacent signals in a sequence) and recurring patterns. Here, we apply network-based modelling to the complex, hierarchically structured songs of humpback whales (Megaptera novaeangliae) from east Australia. Given the song's annual evolving pattern and the cultural conformity of males within a population, network modelling captured the patterns of multiple song types over 13 consecutive years. Song arrangements in each year displayed clear ‘small-world’ network structure, characterized by clusters of highly connected sounds. Transitions between these connected sounds further suggested a combination of both structural stability and variability. Small-world network structure within humpback songs may facilitate the characteristic and persistent vocal learning observed. Similar small-world structures and transition patterns are found in several birdsong displays, indicating common syntactic patterns among vocal learning in multiple taxa. Understanding the syntactic rules governing vocal displays in multiple, independently evolving lineages may indicate what rules or structural features are important to the evolution of complex communication, including human language.PostprintPostprintPeer reviewe
    corecore