691 research outputs found

    Decaying Dark Energy in Higher-Dimensional Gravity

    Get PDF
    We use data from observational cosmology to put constraints on higher-dimensional extensions of general relativity in which the effective four-dimensional dark-energy density (or cosmological "constant") decays with time. In particular we study the implications of this decaying dark energy for the age of the universe, large-scale structure formation, big-bang nucleosynthesis and the magnitude-redshift relation for Type Ia supernovae. Two of these tests (age and the magnitude-redshift relation) place modest lower limits on the free parameter of the theory, a cosmological length scale L akin to the de Sitter radius. These limits will improve if experimental uncertainties on supernova magnitudes can be reduced around z=1.Comment: 11 pages, 5 figures, submitted to A&

    Finite cosmology and a CMB cold spot

    Get PDF
    The standard cosmological model posits a spatially flat universe of infinite extent. However, no observation, even in principle, could verify that the matter extends to infinity. In this work we model the universe as a finite spherical ball of dust and dark energy, and obtain a lower limit estimate of its mass and present size: the mass is at least 5 x 10^23 solar masses and the present radius is at least 50 Gly. If we are not too far from the dust-ball edge we might expect to see a cold spot in the cosmic microwave background, and there might be suppression of the low multipoles in the angular power spectrum. Thus the model may be testable, at least in principle. We also obtain and discuss the geometry exterior to the dust ball; it is Schwarzschild-de Sitter with a naked singularity, and provides an interesting picture of cosmogenesis. Finally we briefly sketch how radiation and inflation eras may be incorporated into the model.Comment: 20 pages, 12 figure

    Constraints on Kaluza-Klein gravity from Gravity Probe B

    Full text link
    Using measurements of geodetic precession from Gravity Probe B, we constrain possible departures from Einstein's General Relativity for a spinning test body in Kaluza-Klein gravity with one additional space dimension. We consider the two known static and spherically symmetric solutions of the 5D field equations (the soliton and canonical metrics) and obtain new limits on the free parameters associated with each. The theory is consistent with observation but must be "close to 4D" in both cases.Comment: 9 pages, 1 figure; General Relativity and Gravitation, in pres

    Cosmological Implications of a Non-Separable 5D Solution of the Vacuum Einstein Field Equations

    Full text link
    An exact class of solutions of the 5D vacuum Einstein field equations (EFEs) is obtained. The metric coefficients are found to be non-separable functions of time and the extra coordinate ll and the induced metric on ll = constant hypersurfaces has the form of a Friedmann-Robertson-Walker cosmology. The 5D manifold and 3D and 4D submanifolds are in general curved, which distinguishes this solution from previous ones in the literature. The singularity structure of the manifold is explored: some models in the class do not exhibit a big bang, while other exhibit a big bang and a big crunch. For the models with an initial singularity, the equation of state of the induced matter evolves from radiation like at early epochs to Milne-like at late times and the big bang manifests itself as a singular hypersurface in 5D. The projection of comoving 5D null geodesics onto the 4D submanifold is shown to be compatible with standard 4D comoving trajectories, while the expansion of 5D null congruences is shown to be in line with conventional notions of the Hubble expansion.Comment: 8 pages, in press in J. Math. Phy

    Extra force and extra mass from noncompact Kaluza-Klein theory in a cosmological model

    Full text link
    Using the Hamilton-Jacobi formalism, we study extra force and extra mass in a recently introduced noncompact Kaluza-Klein cosmological model. We examine the inertial 4D mass m0m_0 of the inflaton field on a 4D FRW bulk in two examples. We find that m0m_0 has a geometrical origin and antigravitational effects on a non inertial 4D bulk should be a consequence of the motion of the fifth coordinate with respect to the 4D bulk.Comment: final version to be published in EPJ

    On the detectability of quantum spacetime foam with gravitational-wave interferometers

    Get PDF
    We discuss a recent provocative suggestion by Amelino-Camelia and others that classical spacetime may break down into ``quantum foam'' on distance scales many orders of magnitude larger than the Planck length, leading to effects which could be detected using large gravitational wave interferometers. This suggestion is based on a quantum uncertainty limit obtained by Wigner using a quantum clock in a gedanken timing experiment. Wigner's limit, however, is based on two unrealistic and unneccessary assumptions: that the clock is free to move, and that it does not interact with the environment. Removing either of these assumptions makes the uncertainty limit invalid, and removes the basis for Amelino-Camelia's suggestion.Comment: Submitted to Phys. Lett.

    Inflaton field governed universe from NKK theory of gravity: stochastic approach

    Full text link
    We study a nonperturbative single field (inflaton) governed cosmological model from a 5D Noncompact Kaluza-Klein (NKK) theory of gravity. The inflaton field fluctuations are estimated for different epochs of the evolution of the universe. We conclude that the inflaton field has been sliding down its (quadratic) potential hill along all the evolution of the universe and a mass of the order of the Hubble parameter. In the model here developed the only free parameter is the Hubble parameter, which could be reconstructed in future from Super Nova Acceleration Probe (SNAP) data.Comment: accepted in European Physical Journal
    corecore