42 research outputs found

    X-ray Isophotes in a Rapidly Rotating Elliptical Galaxy: Evidence of Inflowing Gas

    Full text link
    We describe two-dimensional gasdynamical computations of the X-ray emitting gas in the rotating elliptical galaxy NGC 4649 that indicate an inflow of about one solar mass per year at every radius. Such a large instantaneous inflow cannot have persisted over a Hubble time. The central constant-entropy temperature peak recently observed in the innermost 150 parsecs is explained by compressive heating as gas flows toward the central massive black hole. Since the cooling time of this gas is only a few million years, NGC 4649 provides the most acutely concentrated known example of the cooling flow problem in which the time-integrated apparent mass that has flowed into the galactic core exceeds the total mass observed there. This paradox can be resolved by intermittent outflows of energy or mass driven by accretion energy released near the black hole. Inflowing gas is also required at intermediate kpc radii to explain the ellipticity of X-ray isophotes due to spin-up by mass ejected by stars that rotate with the galaxy and to explain local density and temperature profiles. We provide evidence that many luminous elliptical galaxies undergo similar inflow spin-up. A small turbulent viscosity is required in NGC 4649 to avoid forming large X-ray luminous disks that are not observed, but the turbulent pressure is small and does not interfere with mass determinations that assume hydrostatic equilibrium.Comment: 21 pages, 9 figures, accepted for publication by Ap

    The Cool ISM in Elliptical Galaxies. II. Gas Content in the Volume - Limited Sample and Results from the Combined Elliptical and Lenticular Surveys

    Full text link
    We report new observations of atomic and molecular gas in a volume limited sample of elliptical galaxies. Combining the elliptical sample with an earlier and similar lenticular one, we show that cool gas detection rates are very similar among low luminosity E and SO galaxies but are much higher among luminous S0s. Using the combined sample we revisit the correlation between cool gas mass and blue luminosity which emerged from our lenticular survey, finding strong support for previous claims that the molecular gas in ellipticals and lenticulars has different origins. Unexpectedly, however, and contrary to earlier claims, the same is not true for atomic gas. We speculate that both the AGN feedback and merger paradigms might offer explanations for differences in detection rates, and might also point towards an understanding of why the two gas phases could follow different evolutionary paths in Es and S0s. Finally we present a new and puzzling discovery concerning the global mix of atomic and molecular gas in early type galaxies. Atomic gas comprises a greater fraction of the cool ISM in more gas rich galaxies, a trend which can be plausibly explained. The puzzle is that galaxies tend to cluster around molecular-to-atomic gas mass ratios near either 0.05 or 0.5.Comment: 37 pages, including 4 tables and 12 figures. Accepted for publication in the Astrophysical Journa

    X-Ray Searches for Emission from the WHIM in the Galactic Halo and the Intergalactic Medium

    Full text link
    At least 50% of the baryons in the local universe are undetected and predicted to be in a hot dilute phase (1E5-1E7 K) in low and moderate overdensity environments. We searched for the predicted diffuse faint emission through shadowing observations whereby cool foreground gas absorbs more distant diffuse emission. Observations were obtained with Chandra and XMM-Newton. Using the cold gas in two galaxies, NGC 891 and NGC 5907, shadows were not detected and a newer observation of NGC 891 fails to confirm a previously reported X-ray shadow. Our upper limits lie above model predictions. For Local Group studies, we used a cloud in the Magellanic Stream and a compact high velocity cloud to search for a shadow. Instead of a shadow, the X-ray emission was brighter towards the Magellanic Stream cloud and there is a less significant brightness enhancement toward the other cloud also. The brightness enhancement toward the Magellanic Stream cloud is probably due to an interaction with a hot ambient medium that surrounds the Milky Way. We suggest that this interaction drives a shock into the cloud, heating the gas to X-ray emitting temperatures.Comment: 10 ApJ pages with 10 figure

    Local-Group tests of dark-matter Concordance Cosmology: Towards a new paradigm for structure formation

    Full text link
    (abridged) Predictions of the Concordance Cosmological Model (CCM) of the structures in the environment of large spiral galaxies are compared with observed properties of Local Group galaxies. Five new most probably irreconcilable problems are uncovered. However, the Local Group properties provide hints that may lead to a solution of the above problems The DoS and bulge--satellite correlation suggest that dissipational events forming bulges are related to the processes forming phase-space correlated satellite populations. Such events are well known to occur since in galaxy encounters energy and angular momentum are expelled in the form of tidal tails, which can fragment to form populations of tidal-dwarf galaxies (TDGs) and associated star clusters. If Local Group satellite galaxies are to be interpreted as TDGs then the sub-structure predictions of CCM are internally in conflict. All findings thus suggest that the CCM does not account for the Local Group observations and that therefore existing as well as new viable alternatives have to be further explored. These are discussed and natural solutions for the above problems emerge.Comment: A and A, in press, 25 pages, 9 figures; new version contains minor text adjustments for conformity with the published version and additional minor changes resulting from reader's feedback. The speculation on a dark force has been added. Also, the Fritz Zwicky Paradox is now included to agree with the published versio

    Mass Loss From Evolved Stars in Elliptical Galaxies

    Full text link
    Most of the X-ray emitting gas in early-type galaxies probably originates from red giant mass loss and here we model the interaction between this stellar mass loss and the hot ambient medium. Using two-dimensional hydrodynamic simulations, we adopt a temperature for the ambient medium of 3E6 K along with a range of ambient densities and stellar velocities. When the stellar velocity is supersonic relative to the ambient medium, a bow shock occurs, along with a shock driven into the stellar ejecta, which heats only a fraction of the gas. Behind the bow shock, a cool wake develops but the fast flow of the hot medium causes Kelvin-Helmholtz instabilities to grow and these fingers are shocked and heated (without radiative cooling). Along with the mixing of this wake material with the hot medium, most of the stellar ejecta is heated to approximately the temperature of the hot ambient medium within 2 pc of the star. With the addition of radiative cooling, some wake material remains cool (< 1E5 K), accounting for up to 25% of the stellar mass loss. Less cooled gas survives when the ambient density is lower or when the stellar velocity is higher than in our reference case. These results suggest that some cooled gas should be present in the inner part of early-type galaxies that have a hot ambient medium. These calculations may explain the observed distributed optical emission line gas as well as the presence of dust in early-type galaxies.Comment: 57 pages, which includes 27 figures; ApJ, in press. A version with full-resolution figures can be found at http://www.astro.lsa.umich.edu/~jbregman/public/ms.ps.g

    SATCON2: Executive Summary

    Get PDF
    About twenty years ago, rapid advances in technology led to the viability of lightemitting diodes (LEDs) as outdoor lighting. With compelling operational and economic reasons to make the shift from legacy gas-discharge systems, communities around the world began installing white LEDs as their lighting of choice. In time, the side effects of the vastly increased sky glow and blue-rich spectral distribution of white LEDs became apparent, negatively impacting not only ground-based professional and amateur astronomy but also casual appreciation of the sky, flora and fauna, and human health. Today, we are in the initial years of an analogous watershed moment, this time not on the ground but in space. The rapid development of efficient and in one case reusable rockets by private-sector companies has made Earth orbit no longer the exclusive realm of national agencies like NASA, and a steadily increasing number of entities is now launching both people and hardware into space. The result is exponential growth in the density and variety of satellites at a wide range of altitudes. As the glowing nighttime landscape on Earth has been transformed over the past two decades, so the sky is now being similarly transformed. It is incumbent on all who use space and the night sky as a resource — professional and amateur astronomers, satellite operators, policymakers, environmentalists, people who observe the night sky and who preserve their culture in stories in the stars, and more — to consider the myriad impacts on humanity of the industrialization of space and to establish a shared vision for the use of space that supports and respects all its users. Many efforts today to address the impact of rapidly growing light domes over cities and towns are reactive to already-deployed networks of white LEDs. In the realm of low-Earth orbit (LEO), there is a window of opportunity — albeit narrow and closing — to address the impact of thousands of new satellites proactively. The SATCON workshops are meant to set the foundation for this work

    Dynamical effects of stellar mass loss on a Kuiper-like belt

    Full text link
    A quarter of DA white dwarfs are metal polluted, yet elements heavier than helium sink down through the stellar atmosphere on timescales of days. Hence, these white dwarfs must be currently accreting material containing heavy elements. Here, we consider whether the scattering of comets or asteroids from an outer planetary system, following stellar mass loss on the asymptotic giant branch, can reproduce these observations. We use N-body simulations to investigate the effects of stellar mass loss on a simple system consisting of a planetesimal belt whose inner edge is truncated by a planet. Our simulations find that, starting with a planetesimal belt population fitted to the observed main sequence evolution, sufficient mass is scattered into the inner planetary system to explain the inferred heavy element accretion rates. This assumes that some fraction of the mass scattered into the inner planetary system ends up on star-grazing orbits, is tidally disrupted and accreted onto the white dwarf. The simulations also reproduce the observed decrease in accretion rate with cooling age and predict accretion rates in old (>1Gyr) white dwarfs, in line with observations. The efficiency we assumed for material scattered into the inner planetary system to end up on star-grazing orbits is based on a Solar-like planetary system, since the simulations show that a single planet is not sufficient. Although the correct level of accretion is reproduced, the simulations predict a higher fraction of accreting white dwarfs than observed. This could indicate that evolved planetary systems are less efficient at scattering bodies onto star-grazing orbits or that dynamical instabilities post-stellar mass loss cause rapid planetesimal belt depletion for a significant fraction of systems

    The Great Escape: How Exoplanets and Smaller Bodies Desert Dying Stars

    Full text link
    Mounting discoveries of extrasolar planets orbiting post-main sequence stars motivate studies aimed at understanding the fate of these planets. In the traditional "adiabatic" approximation, a secondary's eccentricity remains constant during stellar mass loss. Here, we remove this approximation, investigate the full two-body point-mass problem with isotropic mass loss, and illustrate the resulting dynamical evolution. The magnitude and duration of a star's mass loss combined with a secondary's initial orbital characteristics might provoke ejection, modest eccentricity pumping, or even circularisation of the orbit. We conclude that Oort clouds and wide-separation planets may be dynamically ejected from 1-7 Solar-mass parent stars during AGB evolution. The vast majority of planetary material which survives a supernova from a 7-20 Solar-mass progenitor will be dynamically ejected from the system, placing limits on the existence of first-generation pulsar planets. Planets around >20 Solar-mass black hole progenitors may easily survive or readily be ejected depending on the core collapse and superwind models applied. Material ejected during stellar evolution might contribute significantly to the free-floating planetary population.Comment: 23 pages, 16 figures, accepted for publication in MNRA

    Hot gas flows on global and nuclear galactic scales

    Get PDF
    Since its discovery as an X-ray source with the Einstein Observatory, the hot X-ray emitting interstellar medium of early-type galaxies has been studied intensively, with observations of improving quality, and with extensive modeling by means of numerical simulations. The main features of the hot gas evolution are outlined here, focussing on the mass and energy input rates, the relationship between the hot gas flow and the main properties characterizing its host galaxy, the flow behavior on the nuclear and global galactic scales, and the sensitivity of the flow to the shape of the stellar mass distribution and the mean rotation velocity of the stars.Comment: 22 pages. Abbreviated version of chapter 2 of the book "Hot Interstellar Matter in Elliptical Galaxies", Springer 201
    corecore