1,734 research outputs found
Role of the Subunits Interactions in the Conformational Transitions in Adult Human Hemoglobin: an Explicit Solvent Molecular Dynamics Study
Hemoglobin exhibits allosteric structural changes upon ligand binding due to
the dynamic interactions between the ligand binding sites, the amino acids
residues and some other solutes present under physiological conditions. In the
present study, the dynamical and quaternary structural changes occurring in two
unligated (deoxy-) T structures, and two fully ligated (oxy-) R, R2 structures
of adult human hemoglobin were investigated with molecular dynamics. It is
shown that, in the sub-microsecond time scale, there is no marked difference in
the global dynamics of the amino acids residues in both the oxy- and the deoxy-
forms of the individual structures. In addition, the R, R2 are relatively
stable and do not present quaternary conformational changes within the time
scale of our simulations while the T structure is dynamically more flexible and
exhibited the T\rightarrow R quaternary conformational transition, which is
propagated by the relative rotation of the residues at the {\alpha}1{\beta}2
and {\alpha}2{\beta}1 interface.Comment: Reprinted (adapted) with permission from J. Phys. Chem. B
DOI:10.1021/jp3022908. Copyright (2012) American Chemical Societ
Local Simulation Algorithms for Coulomb Interaction
Long ranged electrostatic interactions are time consuming to calculate in
molecular dynamics and Monte-Carlo simulations. We introduce an algorithmic
framework for simulating charged particles which modifies the dynamics so as to
allow equilibration using a local Hamiltonian. The method introduces an
auxiliary field with constrained dynamics so that the equilibrium distribution
is determined by the Coulomb interaction. We demonstrate the efficiency of the
method by simulating a simple, charged lattice gas.Comment: Last figure changed to improve demonstration of numerical efficienc
Kinetics of stochastically-gated diffusion-limited reactions and geometry of random walk trajectories
In this paper we study the kinetics of diffusion-limited, pseudo-first-order
A + B -> B reactions in situations in which the particles' intrinsic
reactivities vary randomly in time. That is, we suppose that the particles are
bearing "gates" which interchange randomly and independently of each other
between two states - an active state, when the reaction may take place, and a
blocked state, when the reaction is completly inhibited. We consider four
different models, such that the A particle can be either mobile or immobile,
gated or ungated, as well as ungated or gated B particles can be fixed at
random positions or move randomly. All models are formulated on a
-dimensional regular lattice and we suppose that the mobile species perform
independent, homogeneous, discrete-time lattice random walks. The model
involving a single, immobile, ungated target A and a concentration of mobile,
gated B particles is solved exactly. For the remaining three models we
determine exactly, in form of rigorous lower and upper bounds, the large-N
asymptotical behavior of the A particle survival probability. We also realize
that for all four models studied here such a probalibity can be interpreted as
the moment generating function of some functionals of random walk trajectories,
such as, e.g., the number of self-intersections, the number of sites visited
exactly a given number of times, "residence time" on a random array of lattice
sites and etc. Our results thus apply to the asymptotical behavior of the
corresponding generating functions which has not been known as yet.Comment: Latex, 45 pages, 5 ps-figures, submitted to PR
Notes on bordered Floer homology
This is a survey of bordered Heegaard Floer homology, an extension of the
Heegaard Floer invariant HF-hat to 3-manifolds with boundary. Emphasis is
placed on how bordered Heegaard Floer homology can be used for computations.Comment: 73 pages, 29 figures. Based on lectures at the Contact and Symplectic
Topology Summer School in Budapest, July 2012. v2: Fixed many small typo
Academic freedom: in justification of a universal ideal
This paper examines the justification for, and benefits of, academic freedom to academics, students, universities and the world at large. The paper surveys the development of the concept of academic freedom within Europe, more especially the impact of the reforms at the University of Berlin instigated by Wilhelm von Humboldt. Following from this, the paper examines the reasons why the various facets of academic freedom are important and why the principle should continue to be supported
The structure of a class 3 nonsymbiotic plant haemoglobin from<i>Arabidopsis thaliana</i>reveals a novel N-terminal helical extension
Plant nonsymbiotic haemoglobins fall into three classes, each with distinct properties but all with largely unresolved physiological functions. Here, the first crystal structure of a class 3 nonsymbiotic plant haemoglobin, that fromArabidopsis thaliana, is reported to 1.77 Å resolution. The protein forms a homodimer, with each monomer containing a two-over-two α-helical domain similar to that observed in bacterial truncated haemoglobins. A novel N-terminal extension comprising two α-helices plays a major role in the dimer interface, which occupies the periphery of the dimer–dimer face, surrounding an open central cavity. The haem pocket contains a proximal histidine ligand and an open sixth iron-coordination site with potential for a ligand, in this structure hydroxide, to form hydrogen bonds to a tyrosine or a tryptophan residue. The haem pocket appears to be unusually open to the external environment, with another cavity spanning the entrance of the two haem pockets. The final 23 residues of the C-terminal domain are disordered in the structure; however, these domains in the functional dimer are adjacent and include the only two cysteine residues in the protein sequence. It is likely that these residues form disulfide bondsin vitroand it is conceivable that this C-terminal region may act in a putative complex with a partner moleculein vivo.</jats:p
The ves hypothesis and protein misfolding
Proteins function by changing conformation. These conformational changes, which involve the concerted motion of a large number of atoms are classical events but, in many cases, the triggers are quantum mechani-
cal events such as chemical reactions. Here the initial quantum states after
the chemical reaction are assumed to be vibrational excited states, something
that has been designated as the VES hypothesis. While the dynamics under
classical force fields fail to explain the relatively lower structural stability of
the proteins associated with misfolding diseases, the application of the VES hy-
pothesis to two cases can provide a new explanation for this phenomenon. This explanation relies on the transfer of vibrational energy from water molecules to proteins, a process whose viability is also examined
Highly fluorinated naphthalenes and bifurcated C–H⋯F–C hydrogen bonding
The synthesis and crystal structures of 1,2,4,5,6,8-hexafluoronaphthalene and 1,2,4,6,8-pentafluoronaphthalene are reported. Intermolecular interactions are dominated by offset stacking and by C–H⋯F–C hydrogen bonds. For hexafluoronaphthalene, molecules are linked in layers with (4,4) network topology via R12(6) C–H⋯(F–C)2 supramolecular synthons that are rationalised by consideration of the calculated electrostatic potential of the molecule. Such an arrangement is prevented by the additional hydrogen atom in pentafluoronaphthalene and molecules instead form tapes via an R12(8) (C–H⋯F)2 synthon. The geometric characteristics of C–H⋯(F–C)2 bifurcated hydrogen bonds have been analysed for crystal structures in the Cambridge Structural Database (6416 crystal structures; 9534 C–H⋯(F–C)2 bifurcated hydrogen bonds). A geometric analysis of these hydrogen bonds has enabled the extent of asymmetry of these hydrogen bonds to be assessed and indicates a preference for symmetrically bifurcated interactions
Rh-POP Pincer Xantphos Complexes for C-S and C-H Activation. Implications for Carbothiolation Catalysis
The neutral Rh(I)–Xantphos
complex [Rh(κ<sup>3</sup>-<sub>P,O,P</sub>-Xantphos)Cl]<sub><i>n</i></sub>, <b>4</b>, and cationic Rh(III) [Rh(κ<sup>3</sup>-<sub>P,O,P</sub>-Xantphos)(H)<sub>2</sub>][BAr<sup>F</sup><sub>4</sub>], <b>2a</b>, and [Rh(κ<sup>3</sup>-<sub>P,O,P</sub>-Xantphos-3,5-C<sub>6</sub>H<sub>3</sub>(CF<sub>3</sub>)<sub>2</sub>)(H)<sub>2</sub>][BAr<sup>F</sup><sub>4</sub>], <b>2b</b>, are described [Ar<sup>F</sup> = 3,5-(CF<sub>3</sub>)<sub>2</sub>C<sub>6</sub>H<sub>3</sub>; Xantphos
= 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene; Xantphos-3,5-C<sub>6</sub>H<sub>3</sub>(CF<sub>3</sub>)<sub>2</sub> = 9,9-dimethylxanthene-4,5-bis(bis(3,5-bis(trifluoromethyl)phenyl)phosphine].
A solid-state structure of <b>2b</b> isolated from C<sub>6</sub>H<sub>5</sub>Cl solution shows a κ<sup>1</sup>-chlorobenzene
adduct, [Rh(κ<sup>3</sup>-<sub>P,O,P</sub>-Xantphos-3,5-C<sub>6</sub>H<sub>3</sub>(CF<sub>3</sub>)<sub>2</sub>)(H)<sub>2</sub>(κ<sup>1</sup>-ClC<sub>6</sub>H<sub>5</sub>)][BAr<sup>F</sup><sub>4</sub>], <b>3</b>. Addition of H<sub>2</sub> to <b>4</b> affords,
crystallographically characterized, [Rh(κ<sup>3</sup>-<sub>P,O,P</sub>-Xantphos)(H)<sub>2</sub>Cl], <b>5</b>. Addition of diphenyl
acetylene to <b>2a</b> results in the formation of the C–H
activated metallacyclopentadiene [Rh(κ<sup>3</sup>-<sub>P,O,P</sub>-Xantphos)(ClCH<sub>2</sub>Cl)(σ,σ-(C<sub>6</sub>H<sub>4</sub>)C(H)CPh)][BAr<sup>F</sup><sub>4</sub>], <b>7</b>, a rare example of a crystallographically characterized Rh–dichloromethane
complex, alongside the Rh(I) complex <i>mer</i>-[Rh(κ<sup>3</sup>-<sub>P,O,P</sub>-Xantphos)(η<sup>2</sup>-PhCCPh)][BAr<sup>F</sup><sub>4</sub>], <b>6</b>. Halide abstraction from [Rh(κ<sup>3</sup>-<sub>P,O,P</sub>-Xantphos)Cl]<sub><i>n</i></sub> in the presence of diphenylacetylene affords <b>6</b> as the
only product, which in the solid state shows that the alkyne binds
perpendicular to the κ<sup>3</sup>-POP Xantphos ligand plane.
This complex acts as a latent source of the [Rh(κ<sup>3</sup>-<sub>P,O,P</sub>-Xantphos)]<sup>+</sup> fragment and facilitates
<i>ortho</i>-directed C–S activation in a number
of 2-arylsulfides to give <i>mer</i>-[Rh(κ<sup>3</sup>-<sub>P,O,P</sub>-Xantphos)(σ,κ<sup>1</sup>-Ar)(SMe)][BAr<sup>F</sup><sub>4</sub>] (Ar = C<sub>6</sub>H<sub>4</sub>COMe, <b>8</b>; C<sub>6</sub>H<sub>4</sub>(CO)OMe, <b>9</b>; C<sub>6</sub>H<sub>4</sub>NO<sub>2</sub>, <b>10</b>; C<sub>6</sub>H<sub>4</sub>CNCH<sub>2</sub>CH<sub>2</sub>O, <b>11</b>; C<sub>6</sub>H<sub>4</sub>C<sub>5</sub>H<sub>4</sub>N, <b>12</b>).
Similar C–S bond cleavage is observed with allyl sulfide,
to give <i>fac</i>-[Rh(κ<sup>3</sup>-<sub>P,O,P</sub>-Xantphos)(η<sup>3</sup>-C<sub>3</sub>H<sub>5</sub>)(SPh)][BAr<sup>F</sup><sub>4</sub>], <b>13</b>. These products of C–S
activation have been crystallographically characterized. For <b>8</b> in situ monitoring of the reaction by NMR spectroscopy reveals
the initial formation of <i>fac</i>-κ<sup>3</sup>-<b>8</b>, which then proceeds to isomerize to the <i>mer</i>-isomer. With the <i>para</i>-ketone aryl sulfide, 4-SMeC <sub>6</sub>H<sub>4</sub>COMe, C–H activation <i>ortho</i> to the ketone occurs to give <i>mer</i>-[Rh(κ<sup>3</sup>-<sub>P,O,P</sub>-Xantphos)(σ,κ<sup>1</sup>-4-(COMe)C<sub>6</sub>H<sub>3</sub>SMe)(H)][BAr<sup>F</sup><sub>4</sub>], <b>14</b>. The temporal evolution of carbothiolation catalysis using <i>mer</i>-κ<sup>3</sup>-<b>8</b>, and phenyl acetylene
and 2-(methylthio)acetophenone substrates shows initial fast catalysis
and then a considerably slower evolution of the product. We suggest
that the initially formed <i>fac</i>-isomer of the C–S
activation product is considerably more active than the <i>mer</i>-isomer (i.e., <i>mer</i>-<b>8</b>), the latter of
which is formed rapidly by isomerization, and this accounts for the
observed difference in rates. A likely mechanism is proposed based
upon these data
Molecular recognition of ternary complexes:a new dimension in the structure-guided design of chemical degraders
Molecular glues and bivalent inducers of protein degradation (also known as PROTACs) represent a fascinating new modality in pharmacotherapeutics: the potential to knockdown previously thought ‘undruggable’ targets at sub-stoichiometric concentrations in ways not possible using conventional inhibitors. Mounting evidence suggests these chemical agents, in concert with their target proteins, can be modelled as three-body binding equilibria that can exhibit significant cooperativity as a result of specific ligand-induced molecular recognition. Despite this, many existing drug design and optimization regimens still fixate on binary target engagement, in part due to limited structural data on ternary complexes. Recent crystal structures of protein complexes mediated by degrader molecules, including the first PROTAC ternary complex, underscore the importance of protein protein interactions and intramolecular contacts to the mode of action of this class of compounds. These discoveries have opened the door to a new paradigm for structure-guided drug design: borrowing surface area and molecular recognition from nature to elicit cellular signalling
- …
