2,326 research outputs found
Mode-sum regularization of the scalar self-force: Formulation in terms of a tetrad decomposition of the singular field
We examine the motion in Schwarzschild spacetime of a point particle endowed
with a scalar charge. The particle produces a retarded scalar field which
interacts with the particle and influences its motion via the action of a
self-force. We exploit the spherical symmetry of the Schwarzschild spacetime
and decompose the scalar field in spherical-harmonic modes. Although each mode
is bounded at the position of the particle, a mode-sum evaluation of the
self-force requires regularization because the sum does not converge: the
retarded field is infinite at the position of the particle. The regularization
procedure involves the computation of regularization parameters, which are
obtained from a mode decomposition of the Detweiler-Whiting singular field;
these are subtracted from the modes of the retarded field, and the result is a
mode-sum that converges to the actual self-force. We present such a computation
in this paper. There are two main aspects of our work that are new. First, we
define the regularization parameters as scalar quantities by referring them to
a tetrad decomposition of the singular field. Second, we calculate four sets of
regularization parameters (denoted schematically by A, B, C, and D) instead of
the usual three (A, B, and C). As proof of principle that our methods are
reliable, we calculate the self-force acting on a scalar charge in circular
motion around a Schwarzschild black hole, and compare our answers with those
recorded in the literature.Comment: 38 pages, 2 figure
Intrinsic and extrinsic geometries of a tidally deformed black hole
A description of the event horizon of a perturbed Schwarzschild black hole is
provided in terms of the intrinsic and extrinsic geometries of the null
hypersurface. This description relies on a Gauss-Codazzi theory of null
hypersurfaces embedded in spacetime, which extends the standard theory of
spacelike and timelike hypersurfaces involving the first and second fundamental
forms. We show that the intrinsic geometry of the event horizon is invariant
under a reparameterization of the null generators, and that the extrinsic
geometry depends on the parameterization. Stated differently, we show that
while the extrinsic geometry depends on the choice of gauge, the intrinsic
geometry is gauge invariant. We apply the formalism to solutions to the vacuum
field equations that describe a tidally deformed black hole. In a first
instance we consider a slowly-varying, quadrupolar tidal field imposed on the
black hole, and in a second instance we examine the tide raised during a close
parabolic encounter between the black hole and a small orbiting body.Comment: 27 pages, 4 figure
Gravitational waves from binary systems in circular orbits: Convergence of a dressed multipole truncation
The gravitational radiation originating from a compact binary system in
circular orbit is usually expressed as an infinite sum over radiative multipole
moments. In a slow-motion approximation, each multipole moment is then
expressed as a post-Newtonian expansion in powers of v/c, the ratio of the
orbital velocity to the speed of light. The bare multipole truncation of the
radiation consists in keeping only the leading-order term in the post-Newtonian
expansion of each moment, but summing over all the multipole moments. In the
case of binary systems with small mass ratios, the bare multipole series was
shown in a previous paper to converge for all values v/c < 2/e, where e is the
base of natural logarithms. In this paper, we extend the analysis to a dressed
multipole truncation of the radiation, in which the leading-order moments are
corrected with terms of relative order (v/c)^2 and (v/c)^3. We find that the
dressed multipole series converges also for all values v/c < 2/e, and that it
coincides (within 1%) with the numerically ``exact'' results for v/c < 0.2.Comment: 9 pages, ReVTeX, 1 postscript figur
Corynocarpus similis Hemsley, plante alimentaire et toxique de Vanuatu (ex Nouvelles-Hébrides)
Absorption of mass and angular momentum by a black hole: Time-domain formalisms for gravitational perturbations, and the small-hole/slow-motion approximation
The first objective of this work is to obtain practical prescriptions to
calculate the absorption of mass and angular momentum by a black hole when
external processes produce gravitational radiation. These prescriptions are
formulated in the time domain within the framework of black-hole perturbation
theory. Two such prescriptions are presented. The first is based on the
Teukolsky equation and it applies to general (rotating) black holes. The second
is based on the Regge-Wheeler and Zerilli equations and it applies to
nonrotating black holes. The second objective of this work is to apply the
time-domain absorption formalisms to situations in which the black hole is
either small or slowly moving. In the context of this small-hole/slow-motion
approximation, the equations of black-hole perturbation theory can be solved
analytically, and explicit expressions can be obtained for the absorption of
mass and angular momentum. The changes in the black-hole parameters can then be
understood in terms of an interaction between the tidal gravitational fields
supplied by the external universe and the hole's tidally-induced mass and
current quadrupole moments. For a nonrotating black hole the quadrupole moments
are proportional to the rate of change of the tidal fields on the hole's world
line. For a rotating black hole they are proportional to the tidal fields
themselves.Comment: 36 pages, revtex4, no figures, final published versio
Regularization of static self-forces
Various regularization methods have been used to compute the self-force
acting on a static particle in a static, curved spacetime. Many of these are
based on Hadamard's two-point function in three dimensions. On the other hand,
the regularization method that enjoys the best justification is that of
Detweiler and Whiting, which is based on a four-dimensional Green's function.
We establish the connection between these methods and find that they are all
equivalent, in the sense that they all lead to the same static self-force. For
general static spacetimes, we compute local expansions of the Green's functions
on which the various regularization methods are based. We find that these agree
up to a certain high order, and conjecture that they might be equal to all
orders. We show that this equivalence is exact in the case of ultrastatic
spacetimes. Finally, our computations are exploited to provide regularization
parameters for a static particle in a general static and spherically-symmetric
spacetime.Comment: 23 pages, no figure
Killing vectors and anisotropy
We consider an action that can generate fluids with three unequal stresses
for metrics with a spacelike Killing vector. The parameters in the action are
directly related to the stress anisotropies. The field equations following from
the action are applied to an anisotropic cosmological expansion and an
extension of the Gott-Hiscock cosmic string
Relativistic Effects in Extreme Mass Ratio Gravitational Wave Bursts
Extreme mass ratio bursts (EMRBs) have been proposed as a possible source for
future space-borne gravitational wave detectors, such as the Laser
Interferometer Space Antenna (LISA). These events are characterized by
long-period, nearly-radial orbits of compact objects around a central massive
black hole. The gravitational radiation emitted during such events consists of
a short burst, corresponding to periapse passage, followed by a longer, silent
interval. In this paper we investigate the impact of including relativistic
corrections to the description of the compact object's trajectory via a
geodesic treatment, as well as including higher-order multipole corrections in
the waveform calculation. The degree to which the relativistic corrections are
important depends on the EMRB's orbital parameters. We find that relativistic
EMRBs (v_{max}}/c > 0.25) are not rare and actually account for approximately
half of the events in our astrophysical model. The relativistic corrections
tend to significantly change the waveform amplitude and phase relative to a
Newtonian description, although some of this dephasing could be mimicked by
parameter errors. The dephasing over several bursts could be of particular
importance not only to gravitational wave detection, but also to parameter
estimation, since it is highly correlated to the spin of the massive black
hole. Consequently, we postulate that if a relativistic EMRB is detected, such
dephasing might be used to probe the relativistic character of the massive
black hole and obtain information about its spin.Comment: 13 pages, 8 figures, 2 tables. Replaced with version accepted for
publication in the Ap.
- …
