9,083 research outputs found
Getting the Lorentz transformations without requiring an invariant speed
The structure of the Lorentz transformations follows purely from the absence
of privileged inertial reference frames and the group structure (closure under
composition) of the transformations---two assumptions that are simple and
physically necessary. The existence of an invariant speed is \textit{not} a
necessary assumption, and in fact is a consequence of the principle of
relativity (though the finite value of this speed must, of course, be obtained
from experiment). Von Ignatowsky derived this result in 1911, but it is still
not widely known and is absent from most textbooks. Here we present a
completely elementary proof of the result, suitable for use in an introductory
course in special relativity.Comment: 4 pages, 1 figur
Switchable Adhesion of Soft Composites Induced by a Magnetic Field
Switchable adhesives have the potential to improve the manufacturing and
recycling of parts and to enable new modes of motility for soft robots. Here,
we demonstrate magnetically-switchable adhesion of a two-phase composite to
non-magnetic objects. The composite's continuous phase is a silicone elastomer,
and the dispersed phase is a magneto-rheological fluid. The composite is simple
to prepare, and to mould to different shapes. When a magnetic field is applied,
the magneto-rheological fluid develops a yield stress, which dramatically
enhances the composite's adhesive properties. We demonstrate up to a nine-fold
increase of the pull-off force of non-magnetic objects in the presence of a 250
mT field
The Supersymmetric Ward-Takahashi Identity in 1-Loop Lattice Perturbation Theory. I. General Procedure
The one-loop corrections to the lattice supersymmetric Ward-Takahashi
identity (WTi) are investigated in the off-shell regime. In the Wilson
formulation of the N=1 supersymmetric Yang-Mills (SYM) theory, supersymmetry
(SUSY) is broken by the lattice, by the Wilson term and is softly broken by the
presence of the gluino mass. However, the renormalization of the supercurrent
can be realized in a scheme that restores the continuum supersymmetric WTi
(once the on-shell condition is imposed). The general procedure used to
calculate the renormalization constants and mixing coefficients for the local
supercurrent is presented. The supercurrent not only mixes with the gauge
invariant operator . An extra mixing with other operators coming from
the WTi appears. This extra mixing survives in the continuum limit in the
off-shell regime and cancels out when the on-shell condition is imposed and the
renormalized gluino mass is set to zero. Comparison with numerical results are
also presented.Comment: 16 pages, 2 figures. Typos error correcte
FK Comae Berenices, King of Spin: The COCOA-PUFS Project
COCOA-PUFS is an energy-diverse, time-domain study of the ultra-fast
spinning, heavily spotted, yellow giant FK Com (HD117555; G4 III). This single
star is thought to be a recent binary merger, and is exceptionally active by
measure of its intense ultraviolet and X-ray emissions, and proclivity to
flare. COCOA-PUFS was carried out with Hubble Space Telescope in the UV
(120-300 nm), using mainly its high-performance Cosmic Origins Spectrograph,
but also high-precision Space Telescope Imaging Spectrograph; Chandra X-ray
Observatory in the soft X-rays (0.5-10 keV), utilizing its High-Energy
Transmission Grating Spectrometer; together with supporting photometry and
spectropolarimetry in the visible from the ground. This is an introductory
report on the project.
FK Com displayed variability on a wide range of time scales, over all
wavelengths, during the week-long main campaign, including a large X-ray flare;
"super-rotational broadening" of the far-ultraviolet "hot-lines" (e.g., Si IV
139 nm (T~80,000 K) together with chromospheric Mg II 280 nm and C II 133 nm
(10,000-30,000 K); large Doppler swings suggestive of bright regions
alternately on advancing and retreating limbs of the star; and substantial
redshifts of the epoch-average emission profiles. These behaviors paint a
picture of a highly extended, dynamic, hot (10 MK) coronal magnetosphere around
the star, threaded by cooler structures perhaps analogous to solar prominences,
and replenished continually by surface activity and flares. Suppression of
angular momentum loss by the confining magnetosphere could temporarily postpone
the inevitable stellar spindown, thereby lengthening this highly volatile stage
of coronal evolution.Comment: to be published in ApJ
Flux creep in Bi2Sr2CaCu2O8(sub +x) single crystals
The results of a magnetic study on a Bi2Sr2CaCu2O(8+x) single crystal are reported. Low field susceptibility (dc and ac), magnetization cycles and time dependent measurements were performed. With increasing the temperature the irreversible regime of the magnetization cycles is rapidly restricted to low fields, showing that the critical current J(sub c) becomes strongly field dependent well below T(sub c). At 2.4 K the critical current in zero field, determined from the remanent magnetization by using the Bean formula for the critical state, is J(sub c) = 2 10(exp 5) A/sq cm. The temperature dependence of J(sub c) is satisfactorily described by the phenomenological law J(sub c) = J(sub c) (0) (1 - T/T(sub c) (sup n), with n = 8. The time decay of the zero field cooled magnetization and of the remanent magnetization was studied at different temperatures for different magnetic fields. The time decay was found to be logarithmic in both cases, at least at low temperatures. At T = 4.2 K for a field of 10 kOe applied parallel to the c axis, the average pinning energy, determined by using the flux creep model, is U(sub o) = 0.010 eV
The intermediate-age globular cluster NGC 1783 in the Large Magellanic Cloud
We present Hubble Space Telescope ACS deep photometry of the intermediate-age
globular cluster NGC 1783 in the Large Magellanic Cloud. By using this
photometric dataset, we have determined the degree of ellipticity of the
cluster (=0.140.03) and the radial density profile. This profile
is well reproduced by a standard King model with an extended core (r_c=24.5'')
and a low concentration (c=1.16), indicating that the cluster has not
experienced the collapse of the core.
We also derived the cluster age, by using the Pisa Evolutionary Library (PEL)
isochrones, with three different amount of overshooting (namely,
=0.0, 0.10 and 0.25). From the comparison of the observed
Color-Magnitude Diagram (CMD) and Main Sequence (MS) Luminosity Function (LF)
with the theoretical isochrones and LFs, we find that only models with the
inclusion of some overshooting (=0.10-0.25) are able to reproduce
the observables. By using the magnitude difference between the mean level of the He-clump and the flat
region of the SGB, we derive an age =1.40.2 Gyr.Comment: Accepted to publication by A
Magnetic dipoles and electric currents
We discuss several similarities and differences between the concepts of
electric and magnetic dipoles. We then consider the relation between the
magnetic dipole and a current loop and show that in the limit of a pointlike
circuit, their magnetic fields coincide. The presentation is accessible to
undergraduate students with a knowledge of the basic ideas of classical
electromagnetism.Comment: 7 pages, 1 figur
Hubble Space Telescope Observations of the Oldest Star Clusters in the LMC
We present V, V-I color-magnitude diagrams (CMDs) for three old star clusters
in the Large Magellanic Cloud (LMC): NGC 1466, NGC 2257 and Hodge 11. Our data
extend about 3 magnitudes below the main-sequence turnoff, allowing us to
determine accurate relative ages and the blue straggler frequencies. Based on a
differential comparison of the CMDs, any age difference between the three LMC
clusters is less than 1.5 Gyr. Comparing their CMDs to those of M 92 and M 3,
the LMC clusters, unless their published metallicities are significantly in
error, are the same age as the old Galactic globulars. The similar ages to
Galactic globulars are shown to be consistent with hierarchial clustering
models of galaxy formation. The blue straggler frequencies are also similar to
those of Galactic globular clusters. We derive a true distance modulus to the
LMC of (m-M)=18.46 +/- 0.09 (assuming (m-M)=14.61 for M 92) using these three
LMC clusters.Comment: 22 pages; to be published in Ap
X-ray Variability in the Young Massive Triple theta2 Ori A
Massive stars rarely show intrinsic X-ray variability. The only O-stars
credited to be intrinsically variable are theta1 Ori C due to effects from
magnetic confinement of its wind, and theta2 Ori A suspected of similar
activity. Early Chandra observations have shown that the most massive star
system in the Orion Trapezium Cluster, theta2 Ori A, shows rapid variability on
time scales of hours. We determine X-ray fluxes and find that the star shows
very strong variability over the last 5 years. We observed a second large X-ray
outburst in November 2004 with the high resolution transmission grating
spectrometer on-board Chandra. In the low state X-ray emissivities indicate
temperatures well above 25 MK. In the high state we find an extended emissivity
distribution with high emissivities in the range from 3 MK to over 100 MK. The
outburst event in stellar terms is one of the most powerful ever observed and
the most energetic one in the ONC with a lower total energy limit of 1.5x10^37
ergs. The line diagnostics show that under the assumption that the line
emitting regions in the low states are as close as within 1 -- 2 stellar radii
from the O-star's photosphere, whereas the hard states suggest a distance of 3
-- 5 stellar radii. The two outbursts are very close to the periastron passage
of the stars. We argue that the high X-ray states are possibly the result of
reconnection events from magnetic interactions of the primary and secondary
stars of the spectroscopic binary. Effects from wind collisions seem unlikely
for this system. The low state emissivity and R-ratios strengthen the
predicament that the X-ray emission is enhanced by magnetic confinement of the
primary wind. We also detect Fe fluorescence indicative of the existence of
substantial amounts of neutral Fe in the vicinity of the X-ray emission.Comment: 11 pages, 8 figures, accepted for publication in The Astrophysical
Main Journa
The distance to the LMC cluster Reticulum from the K-band Period-Luminosity-Metallicity relation of RR Lyrae stars
We present new and accurate Near-Infrared J and Ks-band data of the Large
Magellanic Cloud cluster Reticulum. Data were collected with SOFI available at
NTT and covering an area of approximately (5 x 5) arcmin^2 around the center of
the cluster. Current data allowed us to derive accurate mean K-band magnitudes
for 21 fundamental and 9 first overtone RR Lyrae stars. On the basis of the
semi-empirical K-band Period-Luminosity-Metallicity relation we have recently
derived, we find that the absolute distance to this cluster is 18.52 +- 0.005
(random) +- 0.117 (systematic). Note that the current error budget is dominated
by systematic uncertainty affecting the absolute zero-point calibration and the
metallicity scale.Comment: 14 pages, 2 figures, ApJ accepted. Full resolution figure 1 on
request ([email protected]
- …
