2,802 research outputs found
Two-point correlation properties of stochastic "cloud processes''
We study how the two-point density correlation properties of a point particle
distribution are modified when each particle is divided, by a stochastic
process, into an equal number of identical "daughter" particles. We consider
generically that there may be non-trivial correlations in the displacement
fields describing the positions of the different daughters of the same "mother"
particle, and then treat separately the cases in which there are, or are not,
correlations also between the displacements of daughters belonging to different
mothers. For both cases exact formulae are derived relating the structure
factor (power spectrum) of the daughter distribution to that of the mother.
These results can be considered as a generalization of the analogous equations
obtained in ref. [1] (cond-mat/0409594) for the case of stochastic displacement
fields applied to particle distributions. An application of the present results
is that they give explicit algorithms for generating, starting from regular
lattice arrays, stochastic particle distributions with an arbitrarily high
degree of large-scale uniformity.Comment: 14 pages, 3 figure
Most stable structure for hard spheres
The hard sphere model is known to show a liquid-solid phase transition, with
the solid expected to be either face centered cubic or hexagonal close packed.
The difference in free energy between the two structures is very small and
various attempts have been made to determine which one is the more stable. We
contrast the different approaches and extend one.Comment: 5 pages, 1 embedded figure, to appear in Phys Rev
Stakeholders and Sustainability: An Argument for Responsible Corporate Discision-Making
Tiling Spaces are Inverse Limits
Let M be an arbitrary Riemannian homogeneous space, and let Omega be a space
of tilings of M, with finite local complexity (relative to some symmetry group
Gamma) and closed in the natural topology. Then Omega is the inverse limit of a
sequence of compact finite-dimensional branched manifolds. The branched
manifolds are (finite) unions of cells, constructed from the tiles themselves
and the group Gamma. This result extends previous results of Anderson and
Putnam, of Ormes, Radin and Sadun, of Bellissard, Benedetti and Gambaudo, and
of G\"ahler. In particular, the construction in this paper is a natural
generalization of G\"ahler's.Comment: Latex, 6 pages, including one embedded figur
Cartilage degeneration in the human patellae and its relationship to the mineralisation of the underlying bone
Extinctions and Correlations for Uniformly Discrete Point Processes with Pure Point Dynamical Spectra
The paper investigates how correlations can completely specify a uniformly
discrete point process. The setting is that of uniformly discrete point sets in
real space for which the corresponding dynamical hull is ergodic. The first
result is that all of the essential physical information in such a system is
derivable from its -point correlations, . If the system is
pure point diffractive an upper bound on the number of correlations required
can be derived from the cycle structure of a graph formed from the dynamical
and Bragg spectra. In particular, if the diffraction has no extinctions, then
the 2 and 3 point correlations contain all the relevant information.Comment: 16 page
First Order Phase Transition of a Long Polymer Chain
We consider a model consisting of a self-avoiding polygon occupying a
variable density of the sites of a square lattice. A fixed energy is associated
with each -bend of the polygon. We use a grand canonical ensemble,
introducing parameters and to control average density and average
(total) energy of the polygon, and show by Monte Carlo simulation that the
model has a first order, nematic phase transition across a curve in the
- plane.Comment: 11 pages, 7 figure
The structure of the hard sphere solid
We show that near densest-packing the perturbations of the HCP structure
yield higher entropy than perturbations of any other densest packing. The
difference between the various structures shows up in the correlations between
motions of nearest neighbors. In the HCP structure random motion of each sphere
impinges slightly less on the motion of its nearest neighbors than in the other
structures.Comment: For related papers see:
http://www.ma.utexas.edu/users/radin/papers.htm
Institutional isomorphism, negativity bias and performance information use by politicians : a survey experiment
A
Modelling quasicrystals at positive temperature
We consider a two-dimensional lattice model of equilibrium statistical
mechanics, using nearest neighbor interactions based on the matching conditions
for an aperiodic set of 16 Wang tiles. This model has uncountably many ground
state configurations, all of which are nonperiodic. The question addressed in
this paper is whether nonperiodicity persists at low but positive temperature.
We present arguments, mostly numerical, that this is indeed the case. In
particular, we define an appropriate order parameter, prove that it is
identically zero at high temperatures, and show by Monte Carlo simulation that
it is nonzero at low temperatures
- …
