2,802 research outputs found

    Two-point correlation properties of stochastic "cloud processes''

    Full text link
    We study how the two-point density correlation properties of a point particle distribution are modified when each particle is divided, by a stochastic process, into an equal number of identical "daughter" particles. We consider generically that there may be non-trivial correlations in the displacement fields describing the positions of the different daughters of the same "mother" particle, and then treat separately the cases in which there are, or are not, correlations also between the displacements of daughters belonging to different mothers. For both cases exact formulae are derived relating the structure factor (power spectrum) of the daughter distribution to that of the mother. These results can be considered as a generalization of the analogous equations obtained in ref. [1] (cond-mat/0409594) for the case of stochastic displacement fields applied to particle distributions. An application of the present results is that they give explicit algorithms for generating, starting from regular lattice arrays, stochastic particle distributions with an arbitrarily high degree of large-scale uniformity.Comment: 14 pages, 3 figure

    Most stable structure for hard spheres

    Full text link
    The hard sphere model is known to show a liquid-solid phase transition, with the solid expected to be either face centered cubic or hexagonal close packed. The difference in free energy between the two structures is very small and various attempts have been made to determine which one is the more stable. We contrast the different approaches and extend one.Comment: 5 pages, 1 embedded figure, to appear in Phys Rev

    Tiling Spaces are Inverse Limits

    Full text link
    Let M be an arbitrary Riemannian homogeneous space, and let Omega be a space of tilings of M, with finite local complexity (relative to some symmetry group Gamma) and closed in the natural topology. Then Omega is the inverse limit of a sequence of compact finite-dimensional branched manifolds. The branched manifolds are (finite) unions of cells, constructed from the tiles themselves and the group Gamma. This result extends previous results of Anderson and Putnam, of Ormes, Radin and Sadun, of Bellissard, Benedetti and Gambaudo, and of G\"ahler. In particular, the construction in this paper is a natural generalization of G\"ahler's.Comment: Latex, 6 pages, including one embedded figur

    Extinctions and Correlations for Uniformly Discrete Point Processes with Pure Point Dynamical Spectra

    Full text link
    The paper investigates how correlations can completely specify a uniformly discrete point process. The setting is that of uniformly discrete point sets in real space for which the corresponding dynamical hull is ergodic. The first result is that all of the essential physical information in such a system is derivable from its nn-point correlations, n=2,3,>...n= 2, 3, >.... If the system is pure point diffractive an upper bound on the number of correlations required can be derived from the cycle structure of a graph formed from the dynamical and Bragg spectra. In particular, if the diffraction has no extinctions, then the 2 and 3 point correlations contain all the relevant information.Comment: 16 page

    First Order Phase Transition of a Long Polymer Chain

    Full text link
    We consider a model consisting of a self-avoiding polygon occupying a variable density of the sites of a square lattice. A fixed energy is associated with each 9090^\circ-bend of the polygon. We use a grand canonical ensemble, introducing parameters μ\mu and β\beta to control average density and average (total) energy of the polygon, and show by Monte Carlo simulation that the model has a first order, nematic phase transition across a curve in the β\beta-μ\mu plane.Comment: 11 pages, 7 figure

    The structure of the hard sphere solid

    Full text link
    We show that near densest-packing the perturbations of the HCP structure yield higher entropy than perturbations of any other densest packing. The difference between the various structures shows up in the correlations between motions of nearest neighbors. In the HCP structure random motion of each sphere impinges slightly less on the motion of its nearest neighbors than in the other structures.Comment: For related papers see: http://www.ma.utexas.edu/users/radin/papers.htm

    Modelling quasicrystals at positive temperature

    Full text link
    We consider a two-dimensional lattice model of equilibrium statistical mechanics, using nearest neighbor interactions based on the matching conditions for an aperiodic set of 16 Wang tiles. This model has uncountably many ground state configurations, all of which are nonperiodic. The question addressed in this paper is whether nonperiodicity persists at low but positive temperature. We present arguments, mostly numerical, that this is indeed the case. In particular, we define an appropriate order parameter, prove that it is identically zero at high temperatures, and show by Monte Carlo simulation that it is nonzero at low temperatures
    corecore