3,058 research outputs found
Iron concentrations in neurons and glial cells with estimates on ferritin concentrations
BACKGROUND: Brain iron is an essential as well as a toxic redox active element. Physiological levels are not uniform among the different cell types. Besides the availability of quantitative methods, the knowledge about the brain iron lags behind. Thereby, disclosing the mechanisms of brain iron homeostasis helps to understand pathological iron-accumulations in diseased and aged brains. With our study we want to contribute closing the gap by providing quantitative data on the concentration and distribution of iron in neurons and glial cells in situ. Using a nuclear microprobe and scanning proton induced X-ray emission spectrometry we performed quantitative elemental imaging on rat brain sections to analyze the iron concentrations of neurons and glial cells. RESULTS: Neurons were analyzed in the neocortex, subiculum, substantia nigra and deep cerebellar nuclei revealing an iron level between [Formula: see text] and [Formula: see text]. The iron concentration of neocortical oligodendrocytes is fivefold higher, of microglia threefold higher and of astrocytes twofold higher compared to neurons. We also analyzed the distribution of subcellular iron concentrations in the cytoplasm, nucleus and nucleolus of neurons. The cytoplasm contains on average 73 of the total iron, the nucleolus-although a hot spot for iron-due to its small volume only 6 of total iron. Additionally, the iron level in subcellular fractions were measured revealing that the microsome fraction, which usually contains holo-ferritin, has the highest iron content. We also present an estimate of the cellular ferritin concentration calculating [Formula: see text] ferritin molecules per [Formula: see text] in rat neurons. CONCLUSION: Glial cells are the most iron-rich cells in the brain. Imbalances in iron homeostasis that lead to neurodegeneration may not only be originate from neurons but also from glial cells. It is feasible to estimate the ferritin concentration based on measured iron concentrations and a reasonable assumptions on iron load in the brain
Echo of the Quantum Phase Transition of CeCuAu in XPS: Breakdown of Kondo Screening
We present an X-ray photoemission study of the heavy-fermion system
CeCuAu across the magnetic quantum phase transition of this
compound at temperatures above the single-ion Kondo temperature . In
dependence of the Au concentration we observe a sudden change of the
-occupation number and the core-hole potential at the
critical concentration . We interpret these findings in the framework
of the single-impurity Anderson model. Our results are in excellent agreement
with findings from earlier UPS measurements %\cite{klein08qpt} and provide
further information about the precursors of quantum criticality at elevated
temperatures.Comment: 5 pages, 3 figures; published version, references updated, minor
changes in wordin
Temperature dependence of the Kondo resonance and its satellites in CeCu_2Si_2
We present high-resolution photoemission spectroscopy studies on the Kondo
resonance of the strongly-correlated Ce system CeCuSi. Exploiting the
thermal broadening of the Fermi edge we analyze position, spectral weight, and
temperature dependence of the low-energy 4f spectral features, whose major
weight lies above the Fermi level . We also present theoretical
predictions based on the single-impurity Anderson model using an extended
non-crossing approximation (NCA), including all spin-orbit and crystal field
splittings of the 4f states. The excellent agreement between theory and
experiment provides strong evidence that the spectral properties of
CeCuSi can be described by single-impurity Kondo physics down to K.Comment: 4 pages, 3 figure
Evidence of momentum dependent hybridization in Ce2Co0.8Si3.2
We studied the electronic structure of the Kondo lattice system Ce2Co0.8Si3.2
by angle-resolved photoemission spectroscopy (ARPES). The spectra obtained
below the coherence temperature consist of a Kondo resonance, its spin-orbit
partner and a number of dispersing bands. The quasiparticle weight related to
the Kondo peak depends strongly on Fermi vectors associated with bulk bands.
This indicates a highly anisotropic hybridization between conduction band and
4f electrons - V_{cf} in Ce2Co0.8Si3.2.Comment: 6 page
Definition of "banner clouds" based on time lapse movies
International audienceBanner clouds appear on the leeward side of a mountain and resemble a banner or a flag. This article provides a comprehensive definition of "banner clouds". It is based primarily on an extensive collection of time lapse movies, but previous attempts at an explanation of this phenomenon are also taken into account. The following ingredients are considered essential: the cloud must be attached to the mountain but not appear on the windward side; the cloud must originate from condensation of water vapour contained in the air (rather than consist of blowing snow); the cloud must be persistent; and the cloud must not be of convective nature. The definition is illustrated and discussed with the help of still images and time lapse movies taken at Mount Zugspitze in the Bavarian Alps
Electronic structure of YbB: Is it a Topological Insulator or not?
To resolve the controversial issue of the topological nature of the
electronic structure of YbB, we have made a combined study using density
functional theory (DFT) and angle resolved photoemission spectroscopy (ARPES).
Accurate determination of the low energy band topology in DFT requires the use
of modified Becke-Johnson exchange potential incorporating the spin-orbit
coupling and the on-site Coulomb interaction of Yb electrons as large
as 7 eV. We have double-checked the DFT result with the more precise GW band
calculation. ARPES is done with the non-polar (110) surface termination to
avoid band bending and quantum well confinement that have confused ARPES
spectra taken on the polar (001) surface termination. Thereby we show
definitively that YbB has a topologically trivial B 2-Yb 5
semiconductor band gap, and hence is a non-Kondo non-topological insulator
(TI). In agreement with theory, ARPES shows pure divalency for Yb and a -
band gap of 0.3 eV, which clearly rules out both of the previous scenarios of
- band inversion Kondo TI and - band inversion non-Kondo TI. We
have also examined the pressure-dependent electronic structure of YbB,
and found that the high pressure phase is not a Kondo TI but a
\emph{p}-\emph{d} overlap semimetal.Comment: The main text is 6 pages with 4 figures, and the supplementary
information contains 6 figures. 11 pages, 10 figures in total To be appeared
in Phys. Rev. Lett. (Online publication is around March 16 if no delays.
A framework for space-efficient string kernels
String kernels are typically used to compare genome-scale sequences whose
length makes alignment impractical, yet their computation is based on data
structures that are either space-inefficient, or incur large slowdowns. We show
that a number of exact string kernels, like the -mer kernel, the substrings
kernels, a number of length-weighted kernels, the minimal absent words kernel,
and kernels with Markovian corrections, can all be computed in time and
in bits of space in addition to the input, using just a
data structure on the Burrows-Wheeler transform of the
input strings, which takes time per element in its output. The same
bounds hold for a number of measures of compositional complexity based on
multiple value of , like the -mer profile and the -th order empirical
entropy, and for calibrating the value of using the data
Formation of content of educational program on the basis of the analysis of results of training
This article focused on the problem of formation of contents of curricula on the basis of state standards, professional standards, requirements of labor market and resource opportunities of department. I considered the process of formation of the curriculum, identify problem and constructed the Use Case diagram
Structure and transport in multi-orbital Kondo systems
We consider Kondo impurity systems with multiple local orbitals, such as rare
earth ions in a metallic host or multi--level quantum dots coupled to metallic
leads. It is shown that the multiplet structure of the local orbitals leads to
multiple Kondo peaks above the Fermi energy , and to ``shadow'' peaks
below . We use a slave boson mean field theory, which recovers the strong
coupling Fermi liquid fixed point, to calculate the Kondo peak positions,
widths, and heights analytically at T=0, and NCA calculations to fit the
temperature dependence of high--resolution photoemission spectra of Ce
compounds. In addition, an approximate conductance quantization for transport
through multi--level quantum dots or single--atom transistors in the Kondo
regime due to a generalized Friedel sum rule is demonstrated.Comment: 4 pages, 3 figures. Invited article, 23rd International Conference on
Low Temperature Physics LT23, Hiroshima, Japan 200
- …
