4,190 research outputs found
Thermal Energy Generation in the Earth
We show that a recently introduced class of electromagnetic composite
particles can explain some discrepancies in observations involving heat and
helium released from the earth. Energy release during the formation of the
composites and subsequent nuclear reactions involving the composites are
described that can quantitatively account for the discrepancies and are
expected to have implications in other areas of geophysics, for example, a new
picture of heat production and volcanism in the earth is presented.Comment: 11 pages, 7 figure
Electromagnetic wave scattering by a superconductor
The interaction between radiation and superconductors is explored in this
paper. In particular, the calculation of a plane standing wave scattered by an
infinite cylindrical superconductor is performed by solving the Helmholtz
equation in cylindrical coordinates. Numerical results computed up to
of Bessel functions are presented for different wavelengths
showing the appearance of a diffraction pattern.Comment: 3 pages, 3 figure
Translations and dynamics
We analyze the role played by local translational symmetry in the context of
gauge theories of fundamental interactions. Translational connections and
fields are introduced, with special attention being paid to their universal
coupling to other variables, as well as to their contributions to field
equations and to conserved quantities.Comment: 22 Revtex pages, no figures. Published version with minor correction
Poynting's theorem for planes waves at an interface: a scattering matrix approach
We apply the Poynting theorem to the scattering of monochromatic
electromagnetic planes waves with normal incidence to the interface of two
different media. We write this energy conservation theorem to introduce a
natural definition of the scattering matrix S. For the dielectric-dielectric
interface the balance equation lead us to the energy flux conservation which
express one of the properties of S: it is a unitary matrix. For the
dielectric-conductor interface the scattering matrix is no longer unitary due
to the presence of losses at the conductor. However, the dissipative term
appearing in the Poynting theorem can be interpreted as a single absorbing mode
at the conductor such that a whole S, satisfying flux conservation and
containing this absorbing mode, can be defined. This is a simplest version of a
model introduced in the current literature to describe losses in more complex
systems.Comment: 5 pages, 3 figures, submitted to Am. J. Phy
Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber
Trapping and optically interfacing laser-cooled neutral atoms is an essential
requirement for their use in advanced quantum technologies. Here we
simultaneously realize both of these tasks with cesium atoms interacting with a
multi-color evanescent field surrounding an optical nanofiber. The atoms are
localized in a one-dimensional optical lattice about 200 nm above the nanofiber
surface and can be efficiently interrogated with a resonant light field sent
through the nanofiber. Our technique opens the route towards the direct
integration of laser-cooled atomic ensembles within fiber networks, an
important prerequisite for large scale quantum communication schemes. Moreover,
it is ideally suited to the realization of hybrid quantum systems that combine
atoms with, e.g., solid state quantum devices
Diffusive transport of light in three-dimensional disordered Voronoi structures
The origin of diffusive transport of light in dry foams is still under
debate. In this paper, we consider the random walks of photons as they are
reflected or transmitted by liquid films according to the rules of ray optics.
The foams are approximately modeled by three-dimensional Voronoi tessellations
with varying degree of disorder. We study two cases: a constant intensity
reflectance and the reflectance of thin films. Especially in the second case,
we find that in the experimentally important regime for the film thicknesses,
the transport-mean-free path does not significantly depend on the topological
and geometrical disorder of the Voronoi foams including the periodic Kelvin
foam. This may indicate that the detailed structure of foams is not crucial for
understanding the diffusive transport of light. Furthermore, our theoretical
values for transport-mean-free path fall in the same range as the experimental
values observed in dry foams. One can therefore argue that liquid films
contribute substantially to the diffusive transport of light in {dry} foams.Comment: 8 pages, 8 figure
Multipole structure and coordinate systems
Multipole expansions depend on the coordinate system, so that coefficients of
multipole moments can be set equal to zero by an appropriate choice of
coordinates. Therefore, it is meaningless to say that a physical system has a
nonvanishing quadrupole moment, say, without specifying which coordinate system
is used. (Except if this moment is the lowest non-vanishing one.) This result
is demonstrated for the case of two equal like electric charges. Specifically,
an adapted coordinate system in which the potential is given by a monopole term
only is explicitly found, the coefficients of all higher multipoles vanish
identically. It is suggested that this result can be generalized to other
potential problems, by making equal coordinate surfaces coincide with the
potential problem's equipotential surfaces.Comment: 2 figure
The role of angular momentum in the construction of electromagnetic multipolar fields
Multipolar solutions of Maxwell's equations are used in many practical
applications and are essential for the understanding of light-matter
interactions at the fundamental level. Unlike the set of plane wave solutions
of electromagnetic fields, the multipolar solutions do not share a standard
derivation or notation. As a result, expressions originating from different
derivations can be difficult to compare. Some of the derivations of the
multipolar solutions do not explicitly show their relation to the angular
momentum operators, thus hiding important properties of these solutions. In
this article, the relation between two of the most common derivations of this
set of solutions is explicitly shown and their relation to the angular momentum
operators is exposed.Comment: 13 pages, 2 figure
Effects of geometric anisotropy on local field distribution: Ewald-Kornfeld formulation
We have applied the Ewald-Kornfeld formulation to a tetragonal lattice of
point dipoles, in an attempt to examine the effects of geometric anisotropy on
the local field distribution. The various problems encountered in the
computation of the conditionally convergent summation of the near field are
addressed and the methods of overcoming them are discussed. The results show
that the geometric anisotropy has a significant impact on the local field
distribution. The change in the local field can lead to a generalized
Clausius-Mossotti equation for the anisotropic case.Comment: Accepted for publications, Journal of Physics: Condensed Matte
- …
