3,855 research outputs found
Building local capacities in weed management for rice-based systems: Narrative technical report document
Adapting weed management in rice to changing climates
This paper provides some of the scientific background on how projected environmental conditions could affect weeds and weed management in rice in Africa. Elevated CO2 levels may have positive effects on rice competitiveness with C4 weeds, but these are generally outnumbered by C3 species in weed populations of rice in Africa. Moreover, higher temperatures and drought will favor C4 over C3 plants. Increased CO2 levels may also improve tolerance of rice against parasitic weeds, while invasiveness of such species may be stimulated by soil degradation and more frequent droughts or floods. Elevated CO2 may increase belowground relative to aboveground growth, in particular of perennial (C3) species, rendering mechanical control less effective or even counterproductive. Increased CO2 levels, rainfall and temperature may also reduce the effectiveness of chemical control. The implementation of climate change adaptation technologies, such as drought-tolerant germplasm and water-saving irrigation regimes, will also have consequences for rice–weed competition. Rainfed production systems are hypothesized to be most vulnerable to direct effects of climate change (e.g. changes in rainfall patterns) and are likely to face increased competition from C4 and parasitic weeds. Bioticstress- tolerant rice cultivars to be developed for these systems should encompass weed competitiveness and parasitic-weed resistance. In irrigated systems, indirect effects will be more important and weed management strategies should be diversified to lessen dependency on herbicides and mechanical control, and be targeted to perennial rhizotomous (C3) weeds. Water-saving production methods that replace the weed-suppressive flood water layer by intermittent or continuous periods of aerobic conditions, necessitate additional weed management strategies to address the inherent increases in weed competition
Increasing paddy yields and improving farm management: results from participatory experiments with good agricultural practices (GAP) in Tanzania
Rice is an increasingly important commodity in sub-Saharan Africa. In Tanzania, the rice yield gap is as high as 87%, due to a combination of production constraints and sub-optimal crop management. Reducing this yield gap may be partly achieved through the introduction and dissemination of good agricultural practices (GAP). We conducted 18 farmer-managed on-farm trials in Tanzania, to test a set of GAP components against conventional farmers' practices (FP) for two consecutive growing seasons in 2013 and 2014. The objectives were: (1) to understand farmers' capabilities in implementing GAP; (2) to acquire better insights into the merits, relevance and suitability of individual GAP components; and (3) to provide a case study showing that exposure to good practices combined with the farmers' own experimentations can serve to improve and, trigger a positive change in the participating farmers' crop management. Compared to the farmers' own practices, average yield increases of 1 t paddy ha−1 in 2013 and 2.7 t ha−1 in 2014 were achieved when following GAP. These yield advantages were mainly obtained by a higher panicle number, improved harvest index and improved weed control. Farmers experienced difficulties with land levelling, planting or sowing in lines and using rotary weeders, but they were convinced that these technologies are important to boost their rice yields. The case of Tanzania shows that paddy yields can be substantially improved by GAP and that adoption of GAP by smallholder rice farmers can be triggered by stimulating experimentations with such practices on their own farms
Influence of Atmospheric Turbulence on Optical Communications using Orbital Angular Momentum for Encoding
We describe an experimental implementation of a free-space 11-dimensional
communication system using orbital angular momentum (OAM) modes. This system
has a maximum measured OAM channel capacity of 2.12 bits/photon. The effects of
Kolmogorov thin-phase turbulence on the OAM channel capacity are quantified. We
find that increasing the turbulence leads to a degradation of the channel
capacity. We are able to mitigate the effects of turbulence by increasing the
spacing between detected OAM modes. This study has implications for
high-dimensional quantum key distribution (QKD) systems. We describe the sort
of QKD system that could be built using our current technology.Comment: 6 pages, 5 figure
Optical ptychography with extended depth of field
Ptychography is an increasingly popular phase imaging technique. However, like any imaging technique it has a depth of field that limits the volume of a thick specimen that can be imaged in focus. Here, we have proposed to extend the depth of field using a multislice calculation model; an optical experiment successfully demonstrates our proposal
Searching for order in atmospheric pressure plasma jets
The self-organized discharge behaviour occurring in a non-thermal radio-frequency plasma jet in rare gases at atmospheric pressure was investigated. The frequency of the azimuthal rotation of filaments in the active plasma volume and their inclination were measured along with the gas temperature under varying discharge conditions. The gas flow and heating were described theoretically by a three-dimensional hydrodynamic model. The rotation frequencies obtained by both methods qualitatively agree. The results demonstrate that the plasma filaments forming an inclination angle α with the axial gas velocity u z are forced to a transversal movement with the velocity , which is oriented in the inclination direction. Variations of in the model reveal that the observed dynamics minimizes the energy loss due to convective heat transfer by the gas flow. The control of the self-organization regime motivates the application of the plasma jet for precise and reproducible material processing
High-dimensional quantum cryptography with twisted light
Quantum key distributions (QKD) systems often rely on polarization of light
for encoding, thus limiting the amount of information that can be sent per
photon and placing tight bounds on the error that such a system can tolerate.
Here we describe a proof-of-principle experiment that indicates the feasibility
of high-dimensional QKD based on the transverse structure of the light field,
allowing for the transfer of more than 1 bit per photon. Our implementation
uses the orbital angular momentum (OAM) of photons and the corresponding
mutually unbiased basis of angular position (ANG). Our experiment uses a
digital micro-mirror device for the rapid generation of OAM and ANG modes at 4
kHz, and a mode sorter capable of sorting single photons based on their OAM and
ANG content with a separation efficiency of 93\%. Through the use of a
7-dimensional alphabet encoded in the OAM and ANG bases, we achieve a channel
capacity of 2.05 bits per sifted photon. Our experiment shows that, in addition
to having an increased information capacity, QKD systems based on spatial-mode
encoding will be more tolerant to errors and thus more robust against
eavesdropping attacks
Ileal Mucosal and Fecal Pancreatitis Associated Protein Levels Reflect Severity of Salmonella Inflection in Rats
Background Microbial infections induce ileal pancreatitis-associated protein/regenerating gene III (PAP/RegIII) mRNA expression. Despite increasing interest, little is known about the PAP/RegIII protein. Therefore, ileal mucosal PAP/RegIII protein expression, localization, and fecal excretion were studied in rats upon Salmonella infection. Results Salmonella infection increased ileal mucosal PAP/RegIII protein levels in enterocytes located at the crypt-villus junction. Increased colonization and translocation of Salmonella was associated with higher ileal mucosal PAP/RegIII levels and secretion of this protein in feces. Conclusions PAP/RegIII protein is increased in enterocytes of the ileal mucosa during Salmonella infection and is associated with infection severity. PAP/RegIII is excreted in feces and might be used as a new and non-invasive infection marke
Rhamphicarpa fistulosa, a widespread facultative hemi-parasitic weed, threatening rice production in Africa
Rhamphicarpa fistulosa is a facultative hemi-parasitic plant of the Orobanchaceae family, adapted to wet soils. Apart from tropical Australia, it is only found in sub-Saharan Africa, where it is considered a minor weed in cereal crops such as rice. Due to this status, the species has received only sporadic attention. Recent field observations and encounters with rice farmers in several African countries showed that R. fistulosa is, however, a more serious and increasing production constraint than previously thought. Results from a systematic literature review and a global herbarium study support this. The species has a broad distribution over Africa (at least 35 countries from Madagascar to Senegal and from Sudan to South Africa) and a wide range in altitude (0–2150 m a.s.l.) and environment (waterlogged swamps to moist free-draining uplands). Rhamphicarpa fistulosa is relatively independent and persistent because of the presumably wide host range, the facultative nature of its parasitism and its prolific seed (estimated 100 000 seeds m−2 under moderate infestation levels). Finally, R. fistulosa causes severe yield losses (average 60%) and high regional annual economic losses (estimated US $175 million), while effective control options are scant and awareness of the species among important R&D stakeholders is almost absent. An integrated approach is advocated to assist the rice sector to reduce current R. fistulosa-inflicted losses and to prevent further spread of the species into new areas
Noise models for low counting rate coherent diffraction imaging
International audienceCoherent diffraction imaging (CDI) is a lens-less microscopy method that extracts the complex-valued exit field from intensity measurements alone. It is of particular importance for microscopy imaging with diffraction set-ups where high quality lenses are not available. The inversion scheme allowing the phase retrieval is based on the use of an iterative algorithm. In this work, we address the question of the choice of the iterative process in the case of data corrupted by photon or electron shot noise. Several noise models are presented and further used within two inversion strategies, the ordered subset and the scaled gradient. Based on analytical and numerical analysis together with Monte-Carlo studies, we show that any physical interpretations drawn from a CDI iterative technique require a detailed understanding of the relationship between the noise model and the used inversion method. We observe that iterative algorithms often assume implicitly a noise model. For low counting rates, each noise model behaves differently. Moreover, the used optimization strategy introduces its own artefacts. Based on this analysis, we develop a hybrid strategy which works efficiently in the absence of an informed initial guess. Our work emphasises issues which should be considered carefully when inverting experimental data
- …
