66 research outputs found
Farm and household economic study of Kecamatan Nanggung, Kabupaten Bogor, Indonesia: a socio-economic base line study of agroforestry innovations and livelihood enhancement
Sandalwood as a Component of Agroforestry: Exploration of Parasitism and Competition with the Wanulcas Model
Sandalwood is an important component of agroforestry systems in the drier Eastern parts of Indonesia, although its value to farmers is still limited by existing policies and regulation of marketing. As a relatively slow growing root parasite, sandalwood will interact with other components in a complex pattern of competition and host-parasite relationships, depending on root distribution and rooting depth of potential hosts. We describe a number of modifications to the generic tree-soil-crop simulation model WaNuLCAS, that allow exploration of the transition between parasitism and competition. The key variable in this transition is the effectiveness of formation of the parasitic link for all situations where roots of the host and parasite occur in the same volume of soil. At low values of this effectiveness competition dominates, at higher values sandalwood will weaken the host, until it effectively kills it, leading to an optimum response of sandalwood to the effectiveness parameter. Unresolved questions in the formulation of the model are the lifespan of parasitized roots and the question whether or not sandalwood will allocate energy resources for maintenance respiration of host roots after the formation of haustoria. The'desk study' reported here was intended to focus subsequent field studies on these unresolved issues
Genetic diversity of the rain tree (Albizia saman) in Colombian seasonally dry tropical forest for informing conservation and restoration interventions
Albizia saman is a multipurpose tree species of seasonally dry tropical forests (SDTFs) of Mesoamerica and northern South America typically cultivated in silvopastoral and other agroforestry systems around the world, a trend that is bound to increase in light of multimillion hectare commitments for forest and landscape restoration. The effective conservation and sustainable use of A. saman requires detailed knowledge of its genetic diversity across its native distribution range of which surprisingly little is known to date. We assessed the genetic diversity and structure of A.saman across twelve representative locations of SDTF in Colombia, and how they may have been shaped by past climatic changes and human influence. We found four different genetic groups which may be the result of differentiation due to isolation of populations in preglacial times. The current distribution and mixture of genetic groups across STDF fragments we observed might be the result of range expansion of SDTFs during the last glacial period followed by range contraction during the Holocene and human‐influenced movement of germplasm associated with cattle ranching. Despite the fragmented state of the presumed natural A. saman stands we sampled, we did not find any signs of inbreeding, suggesting that gene flow is not jeopardized in humanized landscapes. However, further research is needed to assess potential deleterious effects of fragmentation on progeny. Climate change is not expected to seriously threaten the in situ persistence of A. saman populations and might present opportunities for future range expansion. However, the sourcing of germplasm for tree planting activities needs to be aligned with the genetic affinity of reference populations across the distribution of Colombian SDTFs. We identify priority source populations for in situ conservation based on their high genetic diversity, lack or limited signs of admixture, and/or genetic uniqueness
Forest Tree Nursery and Planting Survey in East Kolaka and Konawe District, Southeast Sulawesi Province, Indonesia
The contributions of biodiversity to the sustainable intensification of food production:Thematic Study to support the State of the World’s Biodiversity for Food and Agriculture
Biodiversity supports sustainable food production, although recognition of its roles has been relatively neglected in the sustainable intensification literature. In the current study, the roles of biodiversity in sustainable food production are considered, assessing how these roles can be measured, the current state of knowledge and opportunities for intervention. The trajectory of global food production, and the challenges and opportunities this presents for the roles of biodiversity in production, are also considered, as well as how biodiversitybased interventions fit within wider considerations for sustainable food systems. The positive interactions between a diverse array of organisms, including annual crops, animal pollinators, trees, micro-organisms, livestock and aquatic animals, support food production globally. To support these interactions, a range of interventions related to access to materials and practices are required. For annual crops, major interventions include breeding crops for more positive crop–crop interactions, and the integration of a wider range of crops into production systems. For animal pollinators, major interventions include the introduction of pollinator populations into production landscapes and the protection and improvement of pollinator habitat. For trees, a major required intervention is the greater integration of perennial legumes into farmland. For micro-organisms, the implementation of agronomic practices that support beneficial crop-microbe interactions is crucial. For livestock production, breed and crop feedstock diversification are essential, and the implementation of improved methods for manure incorporation into cropland. Finally, in the case of aquatic production, it is essential to support the wider adoption of multi-trophic production systems and to diversify crop- and animal-based feed resources. These and other interventions, and the research needs around them, are discussed. Looking to the future, understanding the drivers behind trends in food systems is essential for determining the options for biodiversity in supporting sustainable food production. The increased dominance of a narrow selection of foods globally indicates that efforts to more sustainably produce these foods are crucial. From a biodiversity perspective, this means placing a strong emphasis on breeding for resource use efficiency and adaptation to climate change. It also means challenging the dominance of these foods through focusing on productivity improvements for other crop, livestock and aquaculture species, so that they can compete successfully and find space within production systems. New biodiversity-based models that support food production need not only to be productive but to be profitable. Thus, as well as describing appropriate production system management practices that enhance production and support the environment, the labour, knowledge, time required to operationalize, and other costs of new production approaches, must be considered and minimized. To support the future roles of biodiversity in sustainable food production, we recommend that particular attention be given to the longitudinal analysis of food sectors to determine how the diversity of foods consumed from these sectors has changed over time. Analysis is already available for crops, but related research is needed for livestock and aquaculture sectors. This analysis will then support more optimal cross-sectoral interactions, in terms of the contributions each sector provides to supplying the different components of human diets. Additional meta-analyses and synthetic reviews of case studies are required as an evidence base for biodiversity-based food production system interventions, but future studies should pay more attention to articulating the potential biases in case study compilation (the problem of ‘cherry picking’ positive examples) and the measures that have been taken to minimize such effects
Carbon storage potential of silvopastoral systems of Colombia
Nine Latin American countries plan to use silvopastoral practices—incorporating trees into grazing lands—to mitigate climate change. However, the cumulative potential of scaling up silvopastoral systems at national levels is not well quantified. Here, we combined previously published tree cover data based on 250 m resolution MODIS satellite remote sensing imagery for 2000–2017 with ecofloristic zone carbon stock estimates to calculate historical and potential future tree biomass carbon storage in Colombian grasslands. Between 2000 and 2017, tree cover across all Colombian grasslands increased from 15% to 18%, with total biomass carbon (TBC) stocks increasing from 0.41 to 0.48 Pg. The range in 2017 carbon stock values in grasslands based on ecofloristic zones (5 to 122 Mg ha−1) suggests a potential for further increase. Increasing all carbon stocks to the current median and 75th percentile levels for the respective eco-floristic zone would increase TBC stocks by about 0.06 and 0.15 Pg, respectively. Incorporated into national C accounting, such Tier 2 estimates can set realistic targets for silvopastoral systems in nationally determined contributions (NDCs) and nationally appropriate mitigation actions (NAMAs) implementation plans in Colombia and other Latin American countries with similar contexts
Contributions of biodiversity to the sustainable intensification of food production:Thematic study for <em>The State of the World’s Biodiversity for Food and Agriculture</em>
Finding alternatives to swidden agriculture: does agroforestry improve livelihood options and reduce pressure on existing forest?
Preliminary survey of agroforestry and sustainable vegetable production and marketing in Nanggung Sub District, West Java
This survey covered three farmer groups (Cepak Nangka, Lestari and Sekarsari) as representative of three villages (Kp. Nyuncung-Malasari, Cisarua and Parakan Muncang) in Nanggung Sub-district area. Survey used Participatory Approach with farmers, farmer groups, community leader and market actors.LTRA-5 (Agroforestry and Sustainable Vegetable Production
Non-timber forest products as a source of livelihood diversification for local communities in the Batang Toru Orangutan Conservation Program
- …
