2,831 research outputs found
Commensurate Fluctuations in the Pseudogap and Incommensurate spin-Peierls Phases of TiOCl
X-ray scattering measurements on single crystals of TiOCl reveal the presence
of commensurate dimerization peaks within both the incommensurate spin-Peierls
phase and the so-called pseudogap phase above T_c2. This scattering is
relatively narrow in Q-space indicating long correlation lengths exceeding ~
100 A below T* ~ 130 K. It is also slightly shifted in Q relative to that of
the commensurate long range ordered state at the lowest temperatures, and it
coexists with the incommensurate Bragg peaks below T_c2. The integrated
scattering over both commensurate and incommensurate positions evolves
continuously with decreasing temperature for all temperatures below T* ~ 130 K.Comment: To appear in Physical Review B: Rapid Communications. 5 page
Suppression of the commensurate spin-Peierls state in Sc-doped TiOCl
We have performed x-ray scattering measurements on single crystals of the
doped spin-Peierls compound Ti(1-x)Sc(x)OCl (x = 0, 0.01, 0.03). These
measurements reveal that the presence of non-magnetic dopants has a profound
effect on the unconventional spin-Peierls behavior of this system, even at
concentrations as low as 1%. Sc-doping suppresses commensurate fluctuations in
the pseudogap and incommensurate spin-Peierls phases of TiOCl, and prevents the
formation of a long-range ordered spin-Peierls state. Broad incommensurate
scattering develops in the doped compounds near Tc2 ~ 93 K, and persists down
to base temperature (~ 7 K) with no evidence of a lock-in transition. The width
of the incommensurate dimerization peaks indicates short correlation lengths on
the order of ~ 12 angstroms below Tc2. The intensity of the incommensurate
scattering is significantly reduced at higher Sc concentrations, indicating
that the size of the associated lattice displacement decreases rapidly as a
function of doping.Comment: 7 pages, 5 figure
Magnetic field splitting of the spin-resonance in CeCoIn5
Neutron scattering in strong magnetic fields is used to show the
spin-resonance in superconducting CeCoIn5 (Tc=2.3 K) is a doublet. The
underdamped resonance (\hbar \Gamma=0.069 \pm 0.019 meV) Zeeman splits into two
modes at E_{\pm}=\hbar \Omega_{0}\pm g\mu_{B} \mu_{0}H with g=0.96 \pm 0.05. A
linear extrapolation of the lower peak reaches zero energy at 11.2 \pm 0.5 T,
near the critical field for the incommensurate "Q-phase" indicating that the
Q-phase is a bose condensate of spin excitons.Comment: 5 pages, 4 figure
Structural Fluctuations in the Spin Liquid State of Tb2Ti2O7
High resolution X-ray scattering measurements on single crystal Tb2Ti2O7
reveal finite structural correlations at low temperatures. This geometrically
frustrated pyrochlore is known to exhibit a spin liquid, or cooperative
paramagnetic state, at temperatures below ~ 20 K. Parametric studies of
structural Bragg peaks appropriate to the Fdm space group of Tb2Ti2O7
reveal substantial broadening and peak intensity reduction in the temperature
regime 20 K to 300 mK. We also observe a small, anomalous lattice expansion on
cooling below a density maximum at ~ 18 K. These measurements are consistent
with the development of fluctuations above a cooperative Jahn-Teller,
cubic-tetragonal phase transition at very low temperatures.Comment: 5 pages, 4 figures, submitted for publicatio
A cross‐faculty simulation model for authentic learning
This paper proposes a cross‐faculty simulation model for authentic learning that bridges the gap between short group‐based simulations within the classroom and longer individual placements in professional working contexts. Dissemination of the model is expected to widen the use of authentic learning approaches in higher education (HE). The model is based on a cross‐faculty project in which UK HE students acted as professional developers to produce prototype educational games for academic clients from other subject areas. Perceptions about the project were obtained from interviews with project participants. The stakeholders believed the cross‐faculty simulation to be a motivating learning experience, whilst identifying possible improvements. To evaluate whether the authenticity of the student–client relationship could be improved, the interview data were compared to four themes for authentic learning described by Rule in 2006. The data supported Rule’s themes, whilst highlighting the added value gained from meta‐awareness of the simulation as a learning opportunity
Nature of the spin dynamics and 1/3 magnetization plateau in azurite
We present a specific heat and inelastic neutron scattering study in magnetic
fields up into the 1/3 magnetization plateau phase of the diamond chain
compound azurite Cu(CO)(OH). We establish that the
magnetization plateau is a dimer-monomer state, {\it i.e.}, consisting of a
chain of monomers, which are separated by dimers on the
diamond chain backbone. The effective spin couplings K
and K are derived from the monomer and dimer
dispersions. They are associated to microscopic couplings K,
K and a ferromagnetic K, possibly as
result of orbitals in the Cu-O bonds providing the superexchange
pathways.Comment: 5 pages, 4 figure
Critical X-ray Scattering Studies of Jahn-Teller Phase Transitions in TbVAsO
The critical behaviour associated with cooperative Jahn-Teller phase
transitions in TbVAsO (where \textit{x} = 0, 0.17, 1)
single crystals have been studied using high resolution x-ray scattering. These
materials undergo continuous tetragonal orthorhombic structural phase
transitions driven by Jahn-Teller physics at T = 33.26(2) K, 30.32(2) K and
27.30(2) K for \textit{x} = 0, 0.17 and 1 respectively. The orthorhombic strain
was measured close to the phase transition and is shown to display mean field
behavior in all three samples. Pronounced fluctuation effects are manifest in
the longitudinal width of the Bragg scattering, which diverges as a power law,
with an exponent given by , on approaching the transition from
either above or below. All samples exhibited twinning; however the disordered x
= 0.17 sample showed a broad distribution of twins which were stable to
relatively low temperatures, well below T. This indicates that while the
orthorhombic strain continues to develop in a conventional mean field manner in
the presence of disorder, twin domains are easily pinned by the quenched
impurities and their associated random strains.Comment: 8 pages, 6 figure
- …
