866 research outputs found

    Sudden interaction quench in the quantum sine-Gordon model

    Full text link
    We study a sudden interaction quench in the weak-coupling regime of the quantum sine-Gordon model. The real time dynamics of the bosonic mode occupation numbers is calculated using the flow equation method. While we cannot prove results for the asymptotic long time limit, we can establish the existence of an extended regime in time where the mode occupation numbers relax to twice their equilibrium values. This factor two indicates a non-equilibrium distribution and is a universal feature of weak interaction quenches. The weak-coupling quantum sine-Gordon model therefore turns out to be on the borderline between thermalization and non-thermalization.Comment: 18 pages, 4 figures, published in New Journal of Physic

    NLO jet production in k_T factorization

    Get PDF
    We discuss the inclusive production of jets in the central region of rapidity in the context of k_T-factorization at next-to-leading order (NLO). Calculations are performed in the Regge limit making use of the NLO BFKL results. We introduce a jet cone definition and carry out a proper phase--space separation into multi-Regge and quasi-multi-Regge kinematic regions. We discuss two situations: scattering of highly virtual photons, which requires a symmetric energy scale to separate impact factors from the gluon Green's function, and hadron-hadron collisions, where a non-symmetric scale choice is needed.Comment: 7 pages, 1 figure, prepared for the 12th International Conference on Elastic and Diffractive Scattering, DESY, Hamburg, 21-25 May 200

    Variational approach to the excitonic phase transition in graphene

    Full text link
    We analyze the Coulomb interacting problem in undoped graphene layers by using an excitonic variational ansatz. By minimizing the energy, we derive a gap equation which reproduces and extends known results. We show that a full treatment of the exchange term, which includes the renormalization of the Fermi velocity, tends to suppress the phase transition by increasing the critical coupling at which the excitonic instability takes place.Comment: 4 page

    W-boson production with large transverse momentum at the LHC

    Get PDF
    We study W-boson production with large transverse momentum, Q_T, in pp collisions at the LHC. We calculate the complete NLO corrections and the soft-gluon NNLO corrections to the differential cross section. The NLO corrections are large but they do not reduce the scale dependence relative to LO, while the NNLO soft-gluon corrections, although small, significantly reduce the scale dependence and thus provide a more stable result.Comment: 5 pages, 3 figures, presented at the XIV International Workshop on Deep Inelastic Scattering (DIS 2006), Tsukuba, Japan, April 20-24, 200

    Gluon Regge trajectory at two loops from Lipatov's high energy effective action

    Get PDF
    We present the derivation of the two-loop gluon Regge trajectory using Lipatov's high energy effective action and a direct evaluation of Feynman diagrams. Using a gauge invariant regularization of high energy divergences by deforming the light-cone vectors of the effective action, we determine the two-loop self-energy of the reggeized gluon, after computing the master integrals involved using the Mellin-Barnes representations technique. The self-energy is further matched to QCD through a recently proposed subtraction prescription. The Regge trajectory of the gluon is then defined through renormalization of the reggeized gluon propagator with respect to high energy divergences. Our result is in agreement with previous computations in the literature, providing a non-trivial test of the effective action and the proposed subtraction and renormalization framework.Comment: 22 page

    W production at large transverse momentum at the Large Hadron Collider

    Get PDF
    We study the production of W bosons at large transverse momentum in pp collisions at the Large Hadron Collider (LHC). We calculate the complete next-to-leading order (NLO) corrections to the differential cross section. We find that the NLO corrections provide a large increase to the cross section but, surprisingly, do not reduce the scale dependence relative to leading order (LO). We also calculate next-to-next-to-leading-order (NNLO) soft-gluon corrections and find that, although they are small, they significantly reduce the scale dependence thus providing a more stable theoretical prediction.Comment: 12 pages, 7 figure
    corecore