59 research outputs found

    Fetal liver pro-B and pre-B lymphocyte clones: expression of lymphoid-specific genes, surface markers, growth requirements, colonization of the bone marrow, and generation of B lymphocytes in vivo and in vitro

    Full text link
    We describe here the development and characterization of the FLS4.1 stromal line derived from 15-day fetal liver of BALB/c embryos and defined culture conditions that efficiently support the cloning and long-term growth of nontransformed B-220+ 14-day fetal liver cells at two stages of B-cell development, namely, pro-B lymphocytes (immunoglobulin [Ig] genes in germ line configuration) and pre-B cells (JH-rearranged genes with both light-chain Ig genes in the germ line state). All B-cell precursor clones require recombinant interleukin-7 (rIL-7) and FLS4.1 stromal cells for continuous growth in culture, but pro-B lymphocyte clones can also proliferate in rIL-3. None proliferate in rIL-1, rIL-2, rIL-4, rIL-5, rIL-6, or leukemia inhibitory factor. FLS4.1 stromal cells synthesize mRNA for Steel factor but not for IL-1 to IL-7; all pro-B and pre-B clones express c-Kit, the receptor for Steel factor, and a c-Kit-specific antibody inhibits the enhanced proliferative response of fetal liver B-220+ B-cell precursors supported by FLS4.1 stromal cells and exogenous rIL-7 but does not affect that promoted by rIL-7 alone. Northern (RNA) blot analysis of the expression of the MB-1, lambda 5, Vpre-B, c mu, RAG-1, and RAG-2 genes in pro-B and pre-B clones show that transcription of the MB-1 gene precedes IgH gene rearrangement and RNA synthesis from c mu, RAG-1, RAG-2, lambda 5, and Vpre-B genes. All clones at the pre-B-cell stage synthesize mRNA for c mu, RAG-1, and RAG-2 genes; transcription of the lambda 5 and Vpre-B genes seems to start after D-to-JH rearrangement in B-cell precursors, indicating that the proteins encoded by either gene are not required for B-cell progenitors to undergo D-to-JH gene rearrangement. These findings mark transcription of the MB-1 gene as one of the earliest molecular events in commitment to develop along the B-lymphocyte pathway. Indeed, both pro-B and pre-B clones can generate in vitro and in vivo B lymphocytes but not T lymphocytes; moreover, these clones do not express the CD3-gamma T-cell-specific gene, nor do they have rearranged gamma, delta, or beta T-cell antigen receptor genes.</jats:p

    Fetal liver pro-B and pre-B lymphocyte clones: expression of lymphoid-specific genes, surface markers, growth requirements, colonization of the bone marrow, and generation of B lymphocytes in vivo and in vitro.

    No full text
    We describe here the development and characterization of the FLS4.1 stromal line derived from 15-day fetal liver of BALB/c embryos and defined culture conditions that efficiently support the cloning and long-term growth of nontransformed B-220+ 14-day fetal liver cells at two stages of B-cell development, namely, pro-B lymphocytes (immunoglobulin [Ig] genes in germ line configuration) and pre-B cells (JH-rearranged genes with both light-chain Ig genes in the germ line state). All B-cell precursor clones require recombinant interleukin-7 (rIL-7) and FLS4.1 stromal cells for continuous growth in culture, but pro-B lymphocyte clones can also proliferate in rIL-3. None proliferate in rIL-1, rIL-2, rIL-4, rIL-5, rIL-6, or leukemia inhibitory factor. FLS4.1 stromal cells synthesize mRNA for Steel factor but not for IL-1 to IL-7; all pro-B and pre-B clones express c-Kit, the receptor for Steel factor, and a c-Kit-specific antibody inhibits the enhanced proliferative response of fetal liver B-220+ B-cell precursors supported by FLS4.1 stromal cells and exogenous rIL-7 but does not affect that promoted by rIL-7 alone. Northern (RNA) blot analysis of the expression of the MB-1, lambda 5, Vpre-B, c mu, RAG-1, and RAG-2 genes in pro-B and pre-B clones show that transcription of the MB-1 gene precedes IgH gene rearrangement and RNA synthesis from c mu, RAG-1, RAG-2, lambda 5, and Vpre-B genes. All clones at the pre-B-cell stage synthesize mRNA for c mu, RAG-1, and RAG-2 genes; transcription of the lambda 5 and Vpre-B genes seems to start after D-to-JH rearrangement in B-cell precursors, indicating that the proteins encoded by either gene are not required for B-cell progenitors to undergo D-to-JH gene rearrangement. These findings mark transcription of the MB-1 gene as one of the earliest molecular events in commitment to develop along the B-lymphocyte pathway. Indeed, both pro-B and pre-B clones can generate in vitro and in vivo B lymphocytes but not T lymphocytes; moreover, these clones do not express the CD3-gamma T-cell-specific gene, nor do they have rearranged gamma, delta, or beta T-cell antigen receptor genes

    Bone marrow clones representing an intermediate stage of development between hematopoietic stem cells and pro-T-lymphocyte or pro-B- lymphocyte progenitors

    Full text link
    We have established in culture several nontransformed bone marrow clones (called PR) that show phenotypic and genotypic characteristics that distinguish them from totipotent stem cells and lineage-restricted Pro-T lymphocytes, Pro-B lymphocytes, and myeloid cell progenitors. In vivo and/or in vitro the PR clones give rise to T lymphocytes, B lymphocytes, and some myeloid-lineage cells, but they appear not to be able to generate cells of the erythroid lineage, nor can they rescue mice from a lethal dose of irradiation. We conclude that the PR clones are precursor cells representing an intermediate stage of development between the totipotential stem cell and lineage-restricted progenitor cells. The results described here support a model of blood cell formation in which stem cell differentiation is a progressive process marked by the stepwise loss of self renewal and functional potential. In addition, they provide evidence that cytokines and specialized microenvironments can direct the fate of the developing multipotent progenitor cells.</jats:p

    Bone marrow clones representing an intermediate stage of development between hematopoietic stem cells and pro-T-lymphocyte or pro-B- lymphocyte progenitors

    Full text link
    Abstract We have established in culture several nontransformed bone marrow clones (called PR) that show phenotypic and genotypic characteristics that distinguish them from totipotent stem cells and lineage-restricted Pro-T lymphocytes, Pro-B lymphocytes, and myeloid cell progenitors. In vivo and/or in vitro the PR clones give rise to T lymphocytes, B lymphocytes, and some myeloid-lineage cells, but they appear not to be able to generate cells of the erythroid lineage, nor can they rescue mice from a lethal dose of irradiation. We conclude that the PR clones are precursor cells representing an intermediate stage of development between the totipotential stem cell and lineage-restricted progenitor cells. The results described here support a model of blood cell formation in which stem cell differentiation is a progressive process marked by the stepwise loss of self renewal and functional potential. In addition, they provide evidence that cytokines and specialized microenvironments can direct the fate of the developing multipotent progenitor cells.</jats:p

    Immature and advanced patterns of T cell receptor gene rearrangement among lymphocytes in splenic culture.

    Full text link
    Abstract Bulk populations and 39 hybridomas from splenic Con A cultures were analyzed for rearrangements among TCR genes: alpha, beta, gamma, and delta. Patterns were categorized to reveal general rules governing gene rearrangement within the activated adult peripheral population. Many patterns of gene rearrangement were consistent with previous studies of T cell lines. Additional points of interest were the following: 1) A large proportion of Con A-stimulated splenic cells bore no TCR gene rearrangements. 2) One splenic hybridoma exhibited an unusual gene pattern, with rearrangements, at alpha and beta, but not J gamma 1 or J gamma 2 loci. 3) Multiple gamma rearrangements were noted other than V1.2-J2 and V2-J1. 4) One hybridoma exhibited TCR gene rearrangements typical of day 14 to 15 fetal thymocytes, as well as rearrangements at immunoglobulin gene loci. 5) Among hybridomas with J alpha rearrangements, homologous chromosomes exhibited rearrangements at similar positions along the J alpha locus.</jats:p
    corecore