3,364 research outputs found
Low Threshold Two-Dimensional Annular Bragg Lasers
Lasing at telecommunication wavelengths from annular resonators employing
radial Bragg reflectors is demonstrated at room temperature under pulsed
optical pumping. Sub milliwatt pump threshold levels are observed for
resonators with 0.5-1.5 wavelengths wide defects of radii 7-8 mm. The quality
factors of the resonator modal fields are estimated to be on the order of a few
thousands. The electromagnetic field is shown to be guided by the defect. Good
agreement is found between the measured and calculated spectrum.Comment: 8 pages, 4 figure
Vertically emitting annular Bragg lasers using polymer epitaxial transfer
Fabrication of a planar semiconductor microcavity, composed of cylindrical Bragg reflectors surrounding a radial defect, is demonstrated. A versatile polymer bonding process is used to transfer active InGaAsP resonators to a low-index transfer substrate. Vertical emission of in-plane modes lasing at telecom wavelengths is observed under pulsed optical excitation with a submilliwatt threshold
Band splitting and Modal Dispersion induced by Symmetry braking in Coupled-Resonator Slow-Light Waveguide Structures
We study the dispersion relations in slow-light waveguide structures
consisting of coupled microdisk resonators. A group theoretical analysis of the
symmetry properties of the propagating modes reveals an interesting phenomenon:
The degeneracy of the CW and CCW rotating modes is removed, giving rise to two
distinct transmission bands. This effect induces symmetry-based dispersion
which may limit usable bandwidth of such structures. The properties of this
band splitting and its impact on CROW performance for optical communications
are studied in detail
Collapsar Jets, Bubbles and Fe Lines
In the collapsar scenario, gamma ray bursts are caused by relativistic jets
expelled along the rotation axis of a collapsing stellar core. We discuss how
the structure and time-dependence of such jets depends on the stellar envelope
and central engine properties, assuming a steady jet injection. It takes a few
seconds for the jet to bore its way through the stellar core; most of the
energy output during that period goes into a cocoon of relativistic plasma
surrounding the jet. This material subsequently forms a bubble of magnetized
plasma that takes several hours to expand, subrelativistically, through the
envelope of a high-mass supergiant. Jet break-through and a conventional burst
would be expected not only in He stars but possibly also in blue supergiants.
Shock waves and magnetic dissipation in the escaping bubble can contribute a
non thermal UV/X-ray afterglow, and also excite Fe line emission from thermal
gas, in addition to the standard jet deceleration power-law afterglow.Comment: Ap.J. Letters, accepted 6/20/01, first subm 4/24/01; aaspp4, 9 pages,
no figures; minor revision
Evidence of nitric acid uptake in warm cirrus anvil clouds during the NASA TC4 campaign
Uptake of HNO3 onto cirrus ice may play an important role in tropospheric NOx cycling. Discrepancies between modeled and in situ measurements of gas-phase HNO3 in the troposphere suggest that redistribution and removal mechanisms by cirrus ice have been poorly constrained. Limited in situ measurements have provided somewhat differing results and are not fully compatible with theory developed from laboratory studies. We present new airborne measurements of HNO3 in cirrus clouds from anvil outflow made during the Tropical Composition, Cloud, and Climate Coupling Experiment (TC4). Upper tropospheric (\u3e9 km) measurements made during three flights while repeatedly traversing the same cloud region revealed depletions of gas-phase HNO3 in regions characterized by higher ice water content and surface area. We hypothesize that adsorption of HNO3 onto cirrus ice surfaces could explain this. Using measurements of cirrus ice surface area density and some assumptions about background mixing ratios of gas-phase HNO3, we estimate molecular coverages of HNO 3 on cirrus ice surface in the tropical upper troposphere during the TC4 racetracks to be about 1 × 1013 molecules cm-2. This likely reflects an upper limit because potential dilution by recently convected, scavenged air is ignored. Also presented is an observation of considerably enhanced gas-phase HNO3 at the base of a cirrus anvil suggesting vertical redistribution of HNO3 by sedimenting cirrus particles and subsequent particle sublimation and HNO3 evaporation. The impact of released HNO3, however, appears to be restricted to a very thin layer just below the cloud. Copyright 2010 by the American Geophysical Union
Radiative Efficiencies of Continuously Powered Blast Waves
We use general arguments to show that a continuously powered radiative blast
wave can behave self similarly if the energy injection and radiation mechanisms
are self similar. In that case, the power-law indices of the blast wave
evolution are set by only one of the two constituent physical mechanisms. If
the luminosity of the energy source drops fast enough, the radiation mechanisms
set the power-law indices, otherwise, they are set by the behavior of the
energy source itself. We obtain self similar solutions for the Newtonian and
the ultra-relativistic limits. Both limits behave self similarly if we assume
that the central source supplies energy in the form of a hot wind, and that the
radiative mechanism is the semi-radiative mechanism of Cohen, Piran & Sari
(1998). We calculate the instantaneous radiative efficiencies for both limits
and find that a relativistic blast wave has a higher efficiency than a
Newtonian one. The instantaneous radiative efficiency depends strongly on the
hydrodynamics and cannot be approximated by an estimate of local microscopic
radiative efficiencies, since a fraction of the injected energy is deposited in
shocked matter. These solutions can be used to calculate Gamma Ray Bursts
afterglows, for cases in which the energy is not supplied instantaneously.Comment: 28 LaTeX pages, including 9 figures and 3 table
Seasonal distributions of fine aerosol sulfate in the North American Arctic basin during TOPSE
We used the mist chamber/ion chromatography technique to quantify fine aerosol SO4=(\u3c2.7 μm) in the Arctic during the Tropospheric Ozone Production about the Spring Equinox Experiment (TOPSE) with about 2.5 min time resolution. Our effective sample area ranged from 50° to 86°N and 53° to 100°W. The seasonal evolution of fine aerosol sulfate in the Arctic troposphere during TOPSE was consistent with the phenomenon of Arctic haze. Arctic haze has been attributed to pollution from sources in the Arctic and pollution transported meridionally along stable isentropes into the Arctic in geographically broad but vertically narrow bands. These layers became more prevalent at higher altitudes as the season progressed toward summer, and the relevant isentropes are not held so close to the surface. Mean fine particle SO4= mixing ratios during TOPSE in February below 1000 m were elevated (112 pptv) and highly variable (between 28 and 290 pptv) but were significantly lower at higher altitudes (about 40 pptv). As the season progressed, elevated mixing ratios and higher variability were observed at higher altitudes, up to 7 km. In May, mixing ratios at the lowest altitudes declined but still remained higher than in February at all altitudes. The high variability in our measurements likely reflects the vertical heterogeneity of the wintertime Arctic atmosphere as the airborne sampling platform passed in and out of these layers. It is presumed that mixing ratios and variability will continue to decline at all altitudes into the summer as wet deposition processes become important in removing aerosol SO4= from the troposphere
Lasing from a circular Bragg nanocavity with an ultra-small modal volume
We demonstrate single-mode lasing at telecommunication wavelengths from a
circular nanocavity employing a radial Bragg reflector. Ultra-small modal
volume and Sub milliwatt pump threshold level are observed for lasers with
InGaAsP quantum well active membrane. The electromagnetic field is shown to be
tightly confined within the 300nm central pillar of the cavity. The quality
factors of the resonator modal fields are estimated to be on the order of a few
thousands.Comment: 3 pages, 4 figures Submitted to AP
Stratospheric influence on the northern North American free troposphere during TOPSE: 7Be as a stratospheric tracer
We use 7Be, with HNO3 and O3, to identify air masses sampled from the NCAR C-130 during TOPSE that retained clear evidence of stratospheric influence. A total of 43 such air masses, spread fairly evenly across the February to May sampling period, and 40°N–86°N latitude range, were encountered. South of 55°N, nearly all clear stratospheric influence was restricted to altitudes above 6 km. At higher latitudes stratospherically influenced air masses were encountered as low as 2 km. Approximately 12% of all TOPSE sampling time at altitudes above 2 km was spent in stratospherically impacted air, above 6 km this increased to more than half of the time. Because it is not certain how much of this stratospherically influenced air irreversibly injected mass (and chemical compounds) into the troposphere, we estimate the stratospheric fraction of O3 in high latitude TOPSE samples based on a linear relationship to7Be and compare it to in situ O3. This analysis indicates that the stratospheric source can account for a dominant fraction (\u3e85%) of in situ O3 throughout TOPSE, but that the stratospheric contribution was nearly constant through the 4 month campaign. In February and March the 7Be based estimates of stratospheric O3 account for 10–15% more O3 than was measured, but by April and May there is up to about 10% more O3 than expected from the stratospheric source. This trend suggests that a seasonal transition from O3 depletion to photochemical production in the high latitude North American troposphere is the major cause of the springtime increase in O3
Warped discs and the directional stability of jets in Active Galactic Nuclei
Warped accretion discs in Active Galactic Nuclei (AGN) exert a torque on the
black hole that tends to align the rotation axis with the angular momentum of
the outer disc. We compute the magnitude of this torque by solving numerically
for the steady state shape of the warped disc, and verify that the analytic
solution of Scheuer and Feiler (1996) provides an excellent approximation. We
generalise these results for discs with strong warps and arbitrary surface
density profiles, and calculate the timescale on which the black hole becomes
aligned with the angular momentum in the outer disc. For massive holes and
accretion rates of the order of the Eddington limit the alignment timescale is
always short (less than a Myr), so that jets accelerated from the inner disc
region provide a prompt tracer of the angular momentum of gas at large radii in
the disc. Longer timescales are predicted for low luminosity systems, depending
on the degree of anisotropy in the disc's hydrodynamic response to shear and
warp, and for the final decay of modest warps at large radii in the disc that
are potentially observable via VLBI. We discuss the implications of this for
the inferred accretion history of those Active Galactic Nuclei whose jet
directions appear to be stable over long timescales. The large energy
deposition rate at modest disc radii during rapid realignment episodes should
make such objects transiently bright at optical and infrared wavelengths.Comment: MNRAS, in press. Revised to match accepted version, with one new
figure showing alignment timescale as a function of black hole mas
- …
