1,808 research outputs found
Long wavelength structural anomalies in jammed systems
The structural properties of static, jammed packings of monodisperse spheres
in the vicinity of the jamming transition are investigated using large-scale
computer simulations. At small wavenumber , we argue that the anomalous
behavior in the static structure factor, , is consequential of an
excess of low-frequency, collective excitations seen in the vibrational
spectrum. This anomalous feature becomes more pronounced closest to the jamming
transition, such that at the transition point. We introduce an
appropriate dispersion relation that accounts for these phenomena that leads us
to relate these structural features to characteristic length scales associated
with the low-frequency vibrational modes of these systems. When the particles
are frictional, this anomalous behavior is suppressed providing yet more
evidence that jamming transitions of frictional spheres lie at lower packing
fractions that that for frictionless spheres. These results suggest that the
mechanical properties of jammed and glassy media may therefore be inferred from
measurements of both the static and dynamical structure factors.Comment: 8 pages, 6 figure captions. Completely revised version to appear in
Phys. Rev.
Confined granular packings: structure, stress, and forces
The structure and stresses of static granular packs in cylindrical containers
are studied using large-scale discrete element molecular dynamics simulations
in three dimensions. We generate packings by both pouring and sedimentation and
examine how the final state depends on the method of construction. The vertical
stress becomes depth-independent for deep piles and we compare these stress
depth-profiles to the classical Janssen theory. The majority of the tangential
forces for particle-wall contacts are found to be close to the Coulomb failure
criterion, in agreement with the theory of Janssen, while particle-particle
contacts in the bulk are far from the Coulomb criterion. In addition, we show
that a linear hydrostatic-like region at the top of the packings unexplained by
the Janssen theory arises because most of the particle-wall tangential forces
in this region are far from the Coulomb yield criterion. The distributions of
particle-particle and particle-wall contact forces exhibit
exponential-like decay at large forces in agreement with previous studies.Comment: 11 pages, 11 figures, submitted to PRE (v2) added new references,
fixed typo
Reply to "Comment on `Jamming at zero temperature and zero applied stress: The epitome of disorder' "
We answer the questions raised by Donev, Torquato, Stillinger, and Connelly
in their "Comment on "Jamming at zero temperature and zero applied stress: The
epitome of disorder.' " We emphasize that we follow a fundamentally different
approach than they have done to reinterpret random close packing in terms of
the "maximally random jammed" framework. We define the "maximally random jammed
packing fraction" to be where the largest number of initial states, chosen
completely randomly, have relaxed final states at the jamming threshold in the
thermodynamic limit. Thus, we focus on an ensemble of states at the jamming
threshold, while DTSC are interested in determining the amount of order and
degree of jamming for a particular configuration. We also argue that
soft-particle systems are as "clean" as those using hard spheres for studying
jammed packings and point out the benefits of using soft potentials
Rheology and Contact Lifetime Distribution in Dense Granular Flows
We study the rheology and distribution of interparticle contact lifetimes for
gravity-driven, dense granular flows of non-cohesive particles down an inclined
plane using large-scale, three dimensional, granular dynamics simulations.
Rather than observing a large number of long-lived contacts as might be
expected for dense flows, brief binary collisions predominate. In the hard
particle limit, the rheology conforms to Bagnold scaling, where the shear
stress is quadratic in the strain rate. As the particles are made softer,
however, we find significant deviations from Bagnold rheology; the material
flows more like a viscous fluid. We attribute this change in the collective
rheology of the material to subtle changes in the contact lifetime distribution
involving the increasing lifetime and number of the long-lived contacts in the
softer particle systems.Comment: 4 page
Tuning Jammed Frictionless Disk Packings from Isostatic to Hyperstatic
We perform extensive computational studies of two-dimensional static
bidisperse disk packings using two distinct packing-generation protocols. The
first involves thermally quenching equilibrated liquid configurations to zero
temperature over a range of thermal quench rates and initial packing
fractions followed by compression and decompression in small steps to reach
packing fractions at jamming onset. For the second, we seed the system
with initial configurations that promote micro- and macrophase-separated
packings followed by compression and decompression to . We find that
amorphous, isostatic packings exist over a finite range of packing fractions
from in the large-system limit,
with . In agreement with previous calculations,
we obtain for , where is the rate
above which is insensitive to rate. We further compare the structural
and mechanical properties of isostatic versus hyperstatic packings. The
structural characterizations include the contact number, bond orientational
order, and mixing ratios of the large and small particles. We find that the
isostatic packings are positionally and compositionally disordered, whereas
bond-orientational and compositional order increase with contact number for
hyperstatic packings. In addition, we calculate the static shear modulus and
normal mode frequencies of the static packings to understand the extent to
which the mechanical properties of amorphous, isostatic packings are different
from partially ordered packings. We find that the mechanical properties of the
packings change continuously as the contact number increases from isostatic to
hyperstatic.Comment: 11 pages, 15 figure
Velocity correlations in dense granular flows
Velocity fluctuations of grains flowing down a rough inclined plane are
experimentally studied. The grains at the free surface exhibit fluctuating
motions, which are correlated over few grains diameters. The characteristic
correlation length is shown to depend on the inclination of the plane and not
on the thickness of the flowing layer. This result strongly supports the idea
that dense granular flows are controlled by a characteristic length larger than
the particle diameter
Vibrations and diverging length scales near the unjamming transition
We numerically study the vibrations of jammed packings of particles
interacting with finite-range, repulsive potentials at zero temperature. As the
packing fraction is lowered towards the onset of unjamming at
, the density of vibrational states approaches a non-zero value in
the limit of zero frequency. For , there is a crossover
frequency, below which the density of states drops towards zero.
This crossover frequency obeys power-law scaling with .
Characteristic length scales, determined from the dominant wavevector
contributing to the eigenmode at , diverge as power-laws at the
unjamming transition.Comment: Submitted to PRL, 4 pages + 7 .eps figure
Structural signatures of the unjamming transition at zero temperature
We study the pair correlation function for zero-temperature,
disordered, soft-sphere packings just above the onset of jamming. We find
distinct signatures of the transition in both the first and split second peaks
of this function. As the transition is approached from the jammed side (at
higher packing fraction) the first peak diverges and narrows on the small-
side to a delta-function. On the high- side of this peak, decays as a
power-law. In the split second peak, the two subpeaks are both singular at the
transition, with power-law behavior on their low- sides and step-function
drop-offs on their high- sides. These singularities at the transition are
reminiscent of empirical criteria that have previously been used to distinguish
glassy structures from liquid ones.Comment: 8 pages, 13 figure
Geometric origin of excess low-frequency vibrational modes in amorphous solids
Glasses have a large excess of low-frequency vibrational modes in comparison
with crystalline solids. We show that such a feature is a necessary consequence
of the geometry generic to weakly connected solids. In particular, we analyze
the density of states of a recently simulated system, comprised of weakly
compressed spheres at zero temperature. We account for the observed a)
constancy of the density of modes with frequency, b) appearance of a
low-frequency cutoff, and c) power-law increase of this cutoff with
compression. We predict a length scale below which vibrations are very
different from those of a continuous elastic body.Comment: 4 pages, 2 figures. Argument rewritten, identical result
- …
