1,173 research outputs found
Volumetric calibration of a propellant utilization system
Method of calibrating capacitance-type propellant mass sensors provides meaningful mass units accurate to within one percent of the total load. Neither special propellant loading nor test firing is required. Recalibration of the system is possible without special propellant loading. This method provides increased flexibility for vehicle operation
Survival of bacterial isolates exposed to simulated Jovian trapped radiation belt electrons and solar wind protons
With missions to Jupiter, the spacecraft will be exposed for extended duration to solar wind radiation and the Jovian trapped radiation belt. This study is designed to determine the effect of these radiation environments on spacecraft bacterial isolates. The information can be used in the probability of contamination analysis for these missions. A bacterial subpopulation from Mariner Mars 1971 spacecraft (nine sporeforming and three nonsporeforming isolates) plus two comparative organisms, Staphylococcus epidermidis ATCC 17917 and a strain of Bacillus subtilis var. niger, were exposed to 2-, 12-, and 25-MeV electrons at different doses with simultaneous exposure to a vacuum of 0.0013 N/sqm at 20 and -20 C. The radioresistance of the subpopulation was dependent on the isolate, dose, and energy of electrons. Temperature affected the radioresistance of only the sporeforming isolates. Survival data indicated that spores were reduced approximately 1 log/1500 J/kg, while nonsporeforming isolates (micrococci) were reduced 1.5 to 2 logs/1500 J/kg with the exception of an apparent radioresistant isolate whose resistance approached that of the spores. The subpopulation was found to be less resistant to lower energy than to higher energy electrons
Activated lymphocyte recruitment into the tumor microenvironment following preoperative sipuleucel-T for localized prostate cancer.
BackgroundSipuleucel-T is a US Food and Drug Administration-approved immunotherapy for asymptomatic or minimally symptomatic metastatic castration-resistant prostate cancer (mCRPC). Its mechanism of action is not fully understood. This prospective trial evaluated the direct immune effects of systemically administered sipuleucel-T on prostatic cancer tissue in the preoperative setting.MethodsPatients with untreated localized prostate cancer were treated on an open-label Phase II study of sipuleucel-T prior to planned radical prostatectomy (RP). Immune infiltrates in RP specimens (posttreatment) and in paired pretreatment biopsies were evaluated by immunohistochemistry (IHC). Correlations between circulating immune response and IHC were assessed using Spearman rank order.ResultsOf the 42 enrolled patients, 37 were evaluable. Adverse events were primarily transient, mild-to-moderate and infusion related. Patients developed T cell proliferation and interferon-γ responses detectable in the blood following treatment. Furthermore, a greater-than-three-fold increase in infiltrating CD3(+), CD4(+) FOXP3(-), and CD8(+) T cells was observed in the RP tissues compared with the pretreatment biopsy (binomial proportions: all P < .001). This level of T cell infiltration was observed at the tumor interface, and was not seen in a control group consisting of 12 concurrent patients who did not receive any neoadjuvant treatment prior to RP. The majority of infiltrating T cells were PD-1(+) and Ki-67(+), consistent with activated T cells. Importantly, the magnitude of the circulating immune response did not directly correlate with T cell infiltration within the prostate based upon Spearman's rank order correlation.ConclusionsThis study is the first to demonstrate a local immune effect from the administration of sipuleucel-T. Neoadjuvant sipuleucel-T elicits both a systemic antigen-specific T cell response and the recruitment of activated effector T cells into the prostate tumor microenvironment
Cloneless: Code Clone Detection via Program Dependence Graphs with Relaxed Constraints
Code clones are pieces of code that have the same functionality. While some clones may structurally match one another, others may look drastically different. The inclusion of code clones clutters a code base, leading to increased costs through maintenance. Duplicate code is introduced through a variety of means, such as copy-pasting, code generated by tools, or developers unintentionally writing similar pieces of code. While manual clone identification may be more accurate than automated detection, it is infeasible due to the extensive size of many code bases. Software code clone detection methods have differing degree of success based on the analysis performed. This thesis outlines a method of detecting clones using a program dependence graph and subgraph isomorphism to identify similar subgraphs, ultimately illuminating clones. The project imposes few constraints when comparing code segments to potentially reveal more clones
Store Separations from a Supersonic Cone
The purpose of this research was to analyze the environment a store would travel through if ejected from a supersonic cone. This was done using the Beggar Computational Fluid Dynamics (CFD) code from the Air Force SEEK Eagle Office at Eglin Air Force Base, FL. CFD simulations were compared to experimental results from a previous AFIT thesis and conclusions were drawn based on whether or not the current wind tunnel setup at AFIT is capable of performing analyses of supersonic store separations. Also included in this research is a study of supersonic base pressure profiles, near-wake velocity profiles, wind tunnel shock interactions and force/moment studies on a conical store and parent vehicle. This thesis provided the ground work for future CFD studies relating to aft supersonic store separations. Eventually, this research will be used as the basis of dynamic store separations using the Beggar code. Once dynamic separations are possible, store trajectories and ejection forces can be studied in more detail for a number of different flight conditions
HEP Software Foundation Community White Paper Working Group - Data and Software Preservation to Enable Reuse
In this chapter of the High Energy Physics Software Foundation Community
Whitepaper, we discuss the current state of infrastructure, best practices, and
ongoing developments in the area of data and software preservation in high
energy physics. A re-framing of the motivation for preservation to enable
re-use is presented. A series of research and development goals in software and
other cyberinfrastructure that will aid in the enabling of reuse of particle
physics analyses and production software are presented and discussed
Optimal interdependence between networks for the evolution of cooperation
Recent research has identified interactions between networks as crucial for the outcome of evolutionary
games taking place on them. While the consensus is that interdependence does promote cooperation by
means of organizational complexity and enhanced reciprocity that is out of reach on isolated networks, we
here address the question just how much interdependence there should be. Intuitively, one might assume
the more the better. However, we show that in fact only an intermediate density of sufficiently strong
interactions between networks warrants an optimal resolution of social dilemmas. This is due to an intricate
interplay between the heterogeneity that causes an asymmetric strategy flow because of the additional links
between the networks, and the independent formation of cooperative patterns on each individual network.
Presented results are robust to variations of the strategy updating rule, the topology of interdependent
networks, and the governing social dilemma, thus suggesting a high degree of universality
Boolean analysis identifies CD38 as a biomarker of aggressive localized prostate cancer.
The introduction of serum Prostate Specific Antigen (PSA) testing nearly 30 years ago has been associated with a significant shift towards localized disease and decreased deaths due to prostate cancer. Recognition that PSA testing has caused over diagnosis and over treatment of prostate cancer has generated considerable controversy over its value, and has spurred efforts to identify prognostic biomarkers to distinguish patients who need treatment from those that can be observed. Recent studies show that cancer is heterogeneous and forms a hierarchy of tumor cell populations. We developed a method of identifying prostate cancer differentiation states related to androgen signaling using Boolean logic. Using gene expression data, we identified two markers, CD38 and ARG2, that group prostate cancer into three differentiation states. Cancers with CD38-, ARG2- expression patterns, corresponding to an undifferentiated state, had significantly lower 10-year recurrence-free survival compared to the most differentiated group (CD38+ARG2+). We carried out immunohistochemical (IHC) staining for these two markers in a single institution (Stanford; n = 234) and multi-institution (Canary; n = 1326) cohorts. IHC staining for CD38 and ARG2 in the Stanford cohort demonstrated that combined expression of CD38 and ARG2 was prognostic. In the Canary cohort, low CD38 protein expression by IHC was significantly associated with recurrence-free survival (RFS), seminal vesicle invasion (SVI), extra-capsular extension (ECE) in univariable analysis. In multivariable analysis, ARG2 and CD38 IHC staining results were not independently associated with RFS, overall survival, or disease-specific survival after adjusting for other factors including SVI, ECE, Gleason score, pre-operative PSA, and surgical margins
- …
