93 research outputs found
View-Invariant Regions and Mobile Robot Self-Localization
This paper addresses the problem of mobile robot self-localization
given a polygonal map and a set of observed edge segments. The
standard approach to this problem uses interpretation tree search with
pruning heuristics to match observed edges to map edges. Our approach
introduces a preprocessing step in which the map is decomposed into
'view-invariant regions' (VIRs). The VIR decomposition captures
information about map edge visibility, and can be used for a variety of
robot navigation tasks. Basing self-localization
search on VIRs greatly reduces the branching factor of the search
tree and thereby simplifies the search task. In this paper we define
the VIR decomposition and give algorithms for its computation and for
self-localization search. We present results of simulations comparing
standard and VIR-based search, and discuss the application of the VIR
decomposition to other problems in robot navigation
Calculations of parity nonconserving s-d transitions in Cs, Fr, Ba II, and Ra II
We have performed ab initio mixed-states and sum-over-states calculations of
parity nonconserving (PNC) electric dipole (E1) transition amplitudes between
s-d electron states of Cs, Fr, Ba II, and Ra II. For the lower states of these
atoms we have also calculated energies, E1 transition amplitudes, and
lifetimes. We have shown that PNC E1 transition amplitudes between s-d states
can be calculated to high accuracy. Contrary to the Cs 6s-7s transition, in
these transitions there are no strong cancelations between different terms in
the sum-over-states approach. In fact, there is one dominating term which
deviates from the sum by less than 20%. This term corresponds to an s-p_{1/2}
weak matrix element, which can be calculated to better than 1%, and a
p_{1/2}-d_{3/2} E1 transition amplitude, which can be measured. Also, the s-d
amplitudes are about four times larger than the corresponding s-s transitions.
We have shown that by using a hybrid mixed-states/sum-over-states approach the
accuracy of the calculations of PNC s-d amplitudes could compete with that of
Cs 6s-7s if p_{1/2}-d_{3/2} E1 amplitudes are measured to high accuracy.Comment: 15 pages, 8 figures, submitted to Phys. Rev.
Spectrum of light scattering from an extended atomic wave packet
The spectrum of the light scattered from an extended atomic wave packet is
calculated. For a wave packet consisting of two spatially separated peaks
moving on parallel trajectories, the spectrum contains Ramsey-like fringes that
are sensitive to the phase difference between the two components of the wave
packet. Using this technique, one can establish the mutual coherence of the two
components of the wave packet without recombining them.Comment: 4 page
Direct observation of the phonon energy in a Bose-Einstein condensate by tomographic imaging
The momentum and energy of phonons in a Bose-Einstein condensate are measured
directly from a time-of-flight image by computerized tomography. We find that
the same atoms that carry the momentum of the excitation also carry the
excitation energy. The measured energy is in agreement with the Bogoliubov
spectrum. Hydrodynamic simulations are performed which confirm our observation.Comment: Letter, 5 figure
Action principle formulation for motion of extended bodies in General Relativity
We present an action principle formulation for the study of motion of an
extended body in General Relativity in the limit of weak gravitational field.
This gives the classical equations of motion for multipole moments of arbitrary
order coupling to the gravitational field. In particular, a new force due to
the octupole moment is obtained. The action also yields the gravitationally
induced phase shifts in quantum interference experiments due to the coupling of
all multipole moments.Comment: Revised version derives Octupole moment force. Some clarifications
and a reference added. To appear in Phys. Rev.
A single hollow beam optical trap for cold atoms
We present an optical trap for atoms that we have developed for precision
spectroscopy measurements. Cold atoms are captured in a dark region of space
inside a blue-detuned hollow laser beam formed by an axicon. We analyze the
light potential in a ray optics picture and experimentally demonstrate trapping
of laser-cooled metastable xenon atoms.Comment: 12 pages, 8 figure
A quantum beam splitter for atoms
An interferometric method is proposed to controllably split an atomic
condensate in two spatial components with strongly reduced population
fluctuations. All steps in our proposal are in current use in cold atom
laboratories, and we show with a theoretical calculation that our proposal is
very robust against imperfections of the interferometer.Comment: 6 pages, 3 figures, revtex
Macroscopic coherence of a single exciton state in a polydiacetylene organic quantum wire
We show that a single exciton state in an individual ordered conjugated
polymer chain exhibits macroscopic quantum spatial coherence reaching tens of
microns, limited by the chain length. The spatial coherence of the k=0 exciton
state is demonstrated by selecting two spatially separated emitting regions of
the chain and observing their interference.Comment: 12 pages with 2 figure
Bloch oscillations and mean-field effects of Bose-Einstein condensates in 1-D optical lattices
We have loaded Bose-Einstein condensates into one-dimensional, off-resonant
optical lattices and accelerated them by chirping the frequency difference
between the two lattice beams. For small values of the lattice well-depth,
Bloch oscillations were observed. Reducing the potential depth further,
Landau-Zener tunneling out of the lowest lattice band, leading to a breakdown
of the oscillations, was also studied and used as a probe for the effective
potential resulting from mean-field interactions as predicted by Choi and Niu
[Phys. Rev. Lett. {\bf 82}, 2022 (1999)]. The effective potential was measured
for various condensate densities and trap geometries, yielding good qualitative
agreement with theoretical calculations.Comment: 5 pages, 3 figures; accepted for publication in Physical Review
Letter
- …
