93 research outputs found

    View-Invariant Regions and Mobile Robot Self-Localization

    Get PDF
    This paper addresses the problem of mobile robot self-localization given a polygonal map and a set of observed edge segments. The standard approach to this problem uses interpretation tree search with pruning heuristics to match observed edges to map edges. Our approach introduces a preprocessing step in which the map is decomposed into 'view-invariant regions' (VIRs). The VIR decomposition captures information about map edge visibility, and can be used for a variety of robot navigation tasks. Basing self-localization search on VIRs greatly reduces the branching factor of the search tree and thereby simplifies the search task. In this paper we define the VIR decomposition and give algorithms for its computation and for self-localization search. We present results of simulations comparing standard and VIR-based search, and discuss the application of the VIR decomposition to other problems in robot navigation

    Calculations of parity nonconserving s-d transitions in Cs, Fr, Ba II, and Ra II

    Get PDF
    We have performed ab initio mixed-states and sum-over-states calculations of parity nonconserving (PNC) electric dipole (E1) transition amplitudes between s-d electron states of Cs, Fr, Ba II, and Ra II. For the lower states of these atoms we have also calculated energies, E1 transition amplitudes, and lifetimes. We have shown that PNC E1 transition amplitudes between s-d states can be calculated to high accuracy. Contrary to the Cs 6s-7s transition, in these transitions there are no strong cancelations between different terms in the sum-over-states approach. In fact, there is one dominating term which deviates from the sum by less than 20%. This term corresponds to an s-p_{1/2} weak matrix element, which can be calculated to better than 1%, and a p_{1/2}-d_{3/2} E1 transition amplitude, which can be measured. Also, the s-d amplitudes are about four times larger than the corresponding s-s transitions. We have shown that by using a hybrid mixed-states/sum-over-states approach the accuracy of the calculations of PNC s-d amplitudes could compete with that of Cs 6s-7s if p_{1/2}-d_{3/2} E1 amplitudes are measured to high accuracy.Comment: 15 pages, 8 figures, submitted to Phys. Rev.

    Spectrum of light scattering from an extended atomic wave packet

    Full text link
    The spectrum of the light scattered from an extended atomic wave packet is calculated. For a wave packet consisting of two spatially separated peaks moving on parallel trajectories, the spectrum contains Ramsey-like fringes that are sensitive to the phase difference between the two components of the wave packet. Using this technique, one can establish the mutual coherence of the two components of the wave packet without recombining them.Comment: 4 page

    Direct observation of the phonon energy in a Bose-Einstein condensate by tomographic imaging

    Full text link
    The momentum and energy of phonons in a Bose-Einstein condensate are measured directly from a time-of-flight image by computerized tomography. We find that the same atoms that carry the momentum of the excitation also carry the excitation energy. The measured energy is in agreement with the Bogoliubov spectrum. Hydrodynamic simulations are performed which confirm our observation.Comment: Letter, 5 figure

    Action principle formulation for motion of extended bodies in General Relativity

    Get PDF
    We present an action principle formulation for the study of motion of an extended body in General Relativity in the limit of weak gravitational field. This gives the classical equations of motion for multipole moments of arbitrary order coupling to the gravitational field. In particular, a new force due to the octupole moment is obtained. The action also yields the gravitationally induced phase shifts in quantum interference experiments due to the coupling of all multipole moments.Comment: Revised version derives Octupole moment force. Some clarifications and a reference added. To appear in Phys. Rev.

    A single hollow beam optical trap for cold atoms

    Get PDF
    We present an optical trap for atoms that we have developed for precision spectroscopy measurements. Cold atoms are captured in a dark region of space inside a blue-detuned hollow laser beam formed by an axicon. We analyze the light potential in a ray optics picture and experimentally demonstrate trapping of laser-cooled metastable xenon atoms.Comment: 12 pages, 8 figure

    A quantum beam splitter for atoms

    Full text link
    An interferometric method is proposed to controllably split an atomic condensate in two spatial components with strongly reduced population fluctuations. All steps in our proposal are in current use in cold atom laboratories, and we show with a theoretical calculation that our proposal is very robust against imperfections of the interferometer.Comment: 6 pages, 3 figures, revtex

    Macroscopic coherence of a single exciton state in a polydiacetylene organic quantum wire

    Full text link
    We show that a single exciton state in an individual ordered conjugated polymer chain exhibits macroscopic quantum spatial coherence reaching tens of microns, limited by the chain length. The spatial coherence of the k=0 exciton state is demonstrated by selecting two spatially separated emitting regions of the chain and observing their interference.Comment: 12 pages with 2 figure

    Bloch oscillations and mean-field effects of Bose-Einstein condensates in 1-D optical lattices

    Full text link
    We have loaded Bose-Einstein condensates into one-dimensional, off-resonant optical lattices and accelerated them by chirping the frequency difference between the two lattice beams. For small values of the lattice well-depth, Bloch oscillations were observed. Reducing the potential depth further, Landau-Zener tunneling out of the lowest lattice band, leading to a breakdown of the oscillations, was also studied and used as a probe for the effective potential resulting from mean-field interactions as predicted by Choi and Niu [Phys. Rev. Lett. {\bf 82}, 2022 (1999)]. The effective potential was measured for various condensate densities and trap geometries, yielding good qualitative agreement with theoretical calculations.Comment: 5 pages, 3 figures; accepted for publication in Physical Review Letter
    corecore