426 research outputs found

    A pH-based pedotransfer function for scaling saturated hydraulic conductivity reduction: improved estimation of hydraulic dynamics in HYDRUS

    Get PDF
    Hydraulic conductivity is a key soil property governing agricultural production and is thus an important parameter in hydrologic modeling. The pH scaling factor for saturated hydraulic conductivity (Ks) reduction in the HYDRUS model was reviewed and evaluated for its ability to simulate Ks reduction. A limitation of the model is the generalization of Ks reduction at various levels of electrolyte concentration for different soil types, i.e., it is not soil specific. In this study, a new generalized linear regression model was developed to estimate Ks reduction for a larger set of Australian soils compared with three American soils. A nonlinear pedotransfer function was also produced, using the Levenberg–Marquardt optimization algorithm, by considering the pH and electrolyte concentration of the applied solution as well as the soil clay content. This approach improved the estimation of the pH scaling factor relating to Ks reduction for individual soils. The functions were based on Ks reduction in nine contrasting Australian soils using two sets of treatment solutions with Na adsorption ratios of 20 and 40; total electrolyte concentrations of 8, 15, 25, 50, 100, 250, and 500 mmolc L−1; and pH values of 6, 7, 8, and 9. A comparison of the experimental data and model outputs indicates that the models performed objectively well and successfully described the Ks reduction due to the pH. Further, a nonlinear function provided greater accuracy than the generalized function for the individual soils of Australia and California. This indicates that the nonlinear model provides an improved estimation of the pH scaling factor for Ks reduction in specific soils in the HYDRUS model and should therefore be considered in future HYDRUS developments and applications

    Electronic structure of wurtzite and zinc-blende AlN

    Get PDF
    The electronic structure of AlN in wurtzite and zinc-blende phases is studied experimentally and theoretically. By using x-ray emission spectroscopy, the Al 3p, Al 3s and N 2p spectral densities are obtained. The corresponding local and partial theoretical densities of states (DOS), as well as the total DOS and the band structure, are calculated by using the full potential linearized augmented plane wave method, within the framework of the density functional theory. There is a relatively good agreement between the experimental spectra and the theoretical DOS, showing a large hybridization of the valence states all along the valence band. The discrepancies between the experimental and theoretical DOS, appearing towards the high binding energies, are ascribed to an underestimation of the valence band width in the calculations. Differences between the wurtzite and zinc-blende phases are small and reflect the slight variations between the atomic arrangements of both phases

    Analysis of soil survey data of the Hupselse Beek

    Get PDF

    A Survey of Air-to-Ground Propagation Channel Modeling for Unmanned Aerial Vehicles

    Full text link
    In recent years, there has been a dramatic increase in the use of unmanned aerial vehicles (UAVs), particularly for small UAVs, due to their affordable prices, ease of availability, and ease of operability. Existing and future applications of UAVs include remote surveillance and monitoring, relief operations, package delivery, and communication backhaul infrastructure. Additionally, UAVs are envisioned as an important component of 5G wireless technology and beyond. The unique application scenarios for UAVs necessitate accurate air-to-ground (AG) propagation channel models for designing and evaluating UAV communication links for control/non-payload as well as payload data transmissions. These AG propagation models have not been investigated in detail when compared to terrestrial propagation models. In this paper, a comprehensive survey is provided on available AG channel measurement campaigns, large and small scale fading channel models, their limitations, and future research directions for UAV communication scenarios

    Co-Transport of Polycyclic Aromatic Hydrocarbons by Motile Microorganisms Leads to Enhanced Mass Transfer under Diffusive Conditions.

    Get PDF
    The environmental chemodynamics of hydrophobic organic chemicals (HOCs) are often rate-limited by diffusion in stagnant boundary layers. This study investigated whether motile microorganisms can act as microbial carriers that enhance mass transfer of HOCs through diffusive boundary layers. A new experimental system was developed that allows (1) generation of concentration gradients of HOCs under the microscope, (2) exposure and direct observation of microorganisms in such gradients, and (3) quantification of HOC mass transfer. Silicone O-rings were integrated into a Dunn chemotaxis chamber to serve as sink and source for polycyclic aromatic hydrocarbons (PAHs). This resulted in stable concentration gradients in water (>24 h). Adding the model organism <i>Tetrahymena pyriformis</i> to the experimental system enhanced PAH mass transfer up to hundred-fold (benzo­[a]­pyrene). Increasing mass transfer enhancement with hydrophobicity indicated PAH co-transport with the motile organisms. Fluorescence microscopy confirmed such transport. The effective diffusivity of <i>T. pyriformis</i>, determined by video imaging microscopy, was found to exceed molecular diffusivities of the PAHs up to four-fold. Cell-bound PAH fractions were determined to range from 28% (naphthalene) to 92% (pyrene). Motile microorganisms can therefore function as effective carriers for HOCs under diffusive conditions and might significantly enhance mobility and availability of HOCs

    Joint Australian and New Zealand Soil Science Conference

    Get PDF
    Soil structure stability and hydraulic conductivity are important soil physical properties in agriculture and hydrology. This study aimed to review and evaluate the current scaling hydraulic conductivity reduction factor in HYDRUS model. Nine Australian soils with contrasting properties were selected to determine saturated hydraulic conductivity reduction using different irrigation water with pH of 6 , 7, 8 and 9 at electrolyte concentration of 0.8, 1.5, 2.5, 5.0, 10, 25 and 5 dS.m-1 and sodium adsorption ratio of 20 and 40. The results of hydraulic conductivity were used to develop a generalised function for scaling hydraulic conductivity similar to the current HYDRUS standard function for effects of pH on soil hydraulic dynamics. A nonlinear model was also developed with considering soil clay content and pH and electrolyte concentration of applied irrigation water. The comparison of observed hydraulic conductivity reduction and predicted results indicates that the developed models objectively well predicted the change in hydraulic dynamics due to pH of irrigation water for Australian and Californian soils. The nonlinear model performed greater prediction for individual soils compared to newly generalised model and HYDRUS standard model. Therefore, nonlinear model needs to be considered in future HYDRUS developments

    Characteristic emotional intelligence and emotional well-being

    Get PDF
    Both theory and previous research suggest a link between emotional intelligence and emotional well-being. Emotional intelligence includes the ability to understand and regulate emotions; emotional well-being includes positive mood and high self-esteem. Two studies investigated the relationship between emotional intelligence and mood, and between emotional intelligence and self-esteem. The results of these studies indicated that higher emotional intelligence was associated with characteristically positive mood and higher self-esteem. The results of a third study indicated that higher emotional intelligence was associated with a higher positive mood state and greater state self-esteem. The third study also investigated the role of emotional intelligence in mood and self-esteem regulation and found that individuals with higher emotional intelligence showed less of a decrease in positive mood and self-esteem after a negative state induction using the Velten method, and showed more of an increase in positive mood, but not in self-esteem, after a positive state induction. The findings were discussed in the light of previous work on emotional intelligence, and recommendations were made for further study

    Simulation of pesticide transport in 70-m-thick soil profiles in response to large water applications

    Get PDF
    : Global groundwater depletion is a pressing issue, particularly in regions dependent on groundwater for agriculture. Agricultural Managed Aquifer Recharge (Ag-MAR), where farm fields are used as spreading grounds for flood water, is a promising strategy to replenish groundwater, but it raises concerns about pesticide leaching into aquifers, posing risks to both drinking water quality and ecosystems. This study employs a physically based unsaturated flow model, a Bayesian probabilistic approach and novel towed transient electromagnetic (tTEM) data to determine the fate and transport, especially the maximum transport depths (MTDs) of four pesticide residues (Imidacloprid, Thiamethoxam, Chlorantraniliprole, and Methoxyfenozide) in three 70-m-thick unsaturated zones (P1, P2, P3) of California's Central Valley alluvial aquifer. The results show that Ag-MAR significantly increased MTDs across all profiles for all pesticides and with higher variability in pesticide transport depths compared to the natural rainfall scenario. Profile P2, with the highest sand content exhibited the deepest MTDs under Ag-MAR, indicating a strong influence of soil texture on pesticide transport. While natural capillary barriers at the depth of 2.5-20 m impede water flow under natural rainfall conditions, the high-pressure infiltration during Ag-MAR overcomes these barriers, leading to deeper water and pesticide movement. Among various evaluated pesticides, Methoxyfenozide exhibited the smallest absolute MTDs but the largest relative increases in MTDs (RMTDs) under Ag-MAR due to its persistence and low mobility, posing a higher risk of deep transport during intensive recharge events. In contrast, Thiamethoxam showed the largest MTDs under both scenarios but smaller RMTDs due to its high mobility, suggesting a more consistent transport behavior regardless of recharge practices. The findings highlight the importance of understanding both site-specific and pesticide-specific behaviors to mitigate groundwater contamination risks during large water applications
    corecore