841 research outputs found
The Impacts of Egg Chamber Depth and Clutch Size on Hatching and Emergence Success for Loggerhead Sea Turtles (Caretta Caretta) on South Florida Beaches
All seven extant species of sea turtle are either threatened or endangered due to a multitude of anthropogenic and environmental factors. There has been strong emphasis on reversing this trend through various conservation efforts at multiple life stages, yet, if hatchlings never develop within the nest or are unable to escape the egg chamber, then these efforts are futile. Understanding how they develop, the factors impacting this development and their ability to emerge from the egg chamber are essential for sea turtle conservation. Important factors that may impact hatching success (HS) and emergence success (ES) are egg chamber depth (ECD) and clutch size. The ECD contributes to the cumulative effects of most parameters affecting embryonic development and emergence from the egg chamber while clutch size contributes to the amount of metabolic heating within the nest. If ECD and clutch size significantly impact HS and ES, then identifying an optimal egg chamber depth (OECD) based on clutch size may be useful in maximizing HS and ES. This study examined this relationship through model development for in situ and relocated nests in Broward County, FL. The ECD and clutch size influenced HS and ES, allowing the OECD that maximizes HS and ES to be determined for all nests as well as specified clutch size ranges. Nest location impact to OECD, HS, and ES was examined but no strong trends were observed. Results from this study can be applied to nest relocation methodologies to maximize the hatchling output of any given relocated nest
Artificial Intelligence
Contains research objectives and reports on eight research projects.Computation Center, M.I.T
Toward Human-Carnivore Coexistence: Understanding Tolerance for Tigers in Bangladesh
Fostering local community tolerance for endangered carnivores, such as tigers (Panthera tigris), is a core component of many conservation strategies. Identification of antecedents of tolerance will facilitate the development of effective tolerance-building conservation action and secure local community support for, and involvement in, conservation initiatives. We use a stated preference approach for measuring tolerance, based on the ‘Wildlife Stakeholder Acceptance Capacity’ concept, to explore villagers’ tolerance levels for tigers in the Bangladesh Sundarbans, an area where, at the time of the research, human-tiger conflict was severe. We apply structural equation modeling to test an a priori defined theoretical model of tolerance and identify the experiential and psychological basis of tolerance in this community. Our results indicate that beliefs about tigers and about the perceived current tiger population trend are predictors of tolerance for tigers. Positive beliefs about tigers and a belief that the tiger population is not currently increasing are both associated with greater stated tolerance for the species. Contrary to commonly-held notions, negative experiences with tigers do not directly affect tolerance levels; instead, their effect is mediated by villagers’ beliefs about tigers and risk perceptions concerning human-tiger conflict incidents. These findings highlight a need to explore and understand the socio-psychological factors that encourage tolerance towards endangered species. Our research also demonstrates the applicability of this approach to tolerance research to a wide range of socio-economic and cultural contexts and reveals its capacity to enhance carnivore conservation efforts worldwide
Artificial Intelligence
Contains research objectives and reports on five research projects.Computation Center, M.I.T
Improving the Efficiency of Reasoning Through Structure-Based Reformulation
Abstract. We investigate the possibility of improving the efficiency of reasoning through structure-based partitioning of logical theories, combined with partitionbased logical reasoning strategies. To this end, we provide algorithms for reasoning with partitions of axioms in first-order and propositional logic. We analyze the computational benefit of our algorithms and detect those parameters of a partitioning that influence the efficiency of computation. These parameters are the number of symbols shared by a pair of partitions, the size of each partition, and the topology of the partitioning. Finally, we provide a greedy algorithm that automatically reformulates a given theory into partitions, exploiting the parameters that influence the efficiency of computation.
The abrupt onset of the modern South Asian Monsoon winds
The South Asian Monson (SAM) is one of the most intense climatic elements yet its initiation and variations are not well established. Dating the deposits of SAM wind-driven currents in IODP cores from the Maldives yields an age of 12. 9 Ma indicating an abrupt SAM onset, over a short period of 300 kyrs. This coincided with the Indian Ocean Oxygen Minimum Zone expansion as revealed by geochemical tracers and the onset of upwelling reflected by the sediment's content of particulate organic matter. A weaker 'proto-monsoon' existed between 12.9 and 25 Ma, as mirrored by the sedimentary signature of dust influx. Abrupt SAM initiation favors a strong influence of climate in addition to the tectonic control, and we propose that the post Miocene Climate Optimum cooling, together with increased continentalization and establishment of the bipolar ocean circulation, i.e. the beginning of the modern world, shifted the monsoon over a threshold towards the modern system
Mid-Pleistocene climate transition drives net mass loss from rapidly uplifting St. Elias Mountains, Alaska
Erosion, sediment production and routing on a tectonically active continental margin reflect both tectonic and climatic processes; partitioning the relative importance of these processes remains controversial. Gulf of Alaska contains a preserved sedimentary record of Yakutat Terrane collision with North America. Because tectonic convergence in the coastal St. Elias orogen has been roughly constant for 6 Myr, variations in its eroded sediments preserved in the offshore Surveyor Fan constrain a budget of tectonic material influx, erosion, and sediment output. Seismically imaged sediment volumes calibrated with chronologies derived from Integrated Ocean Drilling Program boreholes shows that erosion accelerated in response to Northern Hemisphere glacial intensification (~2.7 Ma) and that the 900-km long Surveyor Channel inception appears to correlate with this event. However, tectonic influx exceeded integrated sediment efflux over the interval 2.8-1.2 Ma. Volumetric erosion accelerated following the onset of quasi-periodic (~100-kyr) glacial cycles in the mid-Pleistocene climate transition (1.2-0.7 Ma). Since then erosion and transport of material out of the orogen has outpaced tectonic influx by 50-80%. Such a rapid net mass loss explains apparent increases in exhumation rates inferred onshore from exposure dates and mapped out-of-sequence fault patterns. The 1.2 Myr mass budget imbalance must relax back toward equilibrium in balance with tectonic influx over the time scale of orogenic wedge response (Myrs). The St. Elias Range provides a key example of how active orogenic systems respond to transient mass fluxes, and the possible influence of climate driven erosive processes that diverge from equilibrium on the million-year scale
Topological defect networks for fractons of all types
Fracton phases exhibit striking behavior which appears to render them beyond the standard topological quantum field theory (TQFT) paradigm for classifying gapped quantum matter. Here, we explore fracton phases from the perspective of defect TQFTs and show that topological defect networks—networks of topological defects embedded in stratified 3+1-dimensional (3+1D) TQFTs—provide a unified framework for describing various types of gapped fracton phases. In this picture, the subdimensional excitations characteristic of fractonic matter are a consequence of mobility restrictions imposed by the defect network. We conjecture that all gapped phases, including fracton phases, admit a topological defect network description and support this claim by explicitly providing such a construction for many well-known fracton models, including the X-cube and Haah's B code. To highlight the generality of our framework, we also provide a defect network construction of a fracton phase hosting non-Abelian fractons. As a byproduct of this construction, we obtain a generalized membrane-net description for fractonic ground states as well as an argument that our conjecture implies no topological fracton phases exist in 2+1-dimensional gapped systems. Our paper also sheds light on techniques for constructing higher-order gapped boundaries of 3+1D TQFTs
The ATLAS Trigger/DAQ Authorlist, version 3.1
This is the ATLAS Trigger/DAQ Authorlist, version 3.1, 17 September 200
The ATLAS Trigger/DAQ Authorlist, version 2.0
This is the ATLAS Trigger/DAQ Authorlist, version 2.0, 31 July 200
- …
