146 research outputs found

    Fluorescence quenching in β-cyclodextrin vesicles: Membrane confinement and host-guest interactions

    Get PDF
    Fluorescent β-cyclodextrin vesicles (β-CDV) that display host cavities available for host-guest interactions at the vesicle surface were prepared by incorporation of the hydrophobic spirobifluorene-based dye 1 into the membrane of unilamellar vesicles. Fluorescence quenching of dye 1 was observed in the presence of different quenchers. Methyl viologen 2 does not quench dye 1 because it does not bind to β-CDV. 4-Nitrophenol 3 and 4-nitrophenol covalently connected to adamantane 4 quench the fluorescence of dye 1 in neutral solution, but by different mechanisms according to lifetime measurements. The quenching efficiency of 3 is pH dependent due to the presence of the phenolate form. Competition experiments with excess host and guest showed that 3 is likely to diffuse in and out of the membrane, while 4 forms an inclusion complex with β-CDV leading to close contact and efficient quenching. Our findings confirm that this dynamic supramolecular system is a versatile model to investigate quenching and recognition processes in bilayer membranes

    Mapping the Regioisomeric Space and Visible Color Range of Purely Organic Dual Emitters with Ultralong Phosphorescence Components: From Violet to Red Towards Pure White Light

    Get PDF
    We mapped the entire visible range of the electromagnetic spectrum and achieved white light emission (CIE: 0.31, 0.34) by combining the intrinsic ns-fluorescence with ultralong ms-phosphorescence from purely organic dual emitters. We realized small molecular materials showing high photoluminescence quantum yields (ΦL) in the solid state at room temperature, achieved by active exploration of the regioisomeric substitution space. Chromophore stacking-supported stabilization of triplet excitons with assistance from enhanced intersystem crossing channels in the crystalline state played the primary role for the ultra-long phosphorescence. This strategy covers the entire visible spectrum, based on organic phosphorescent emitters with versatile regioisomeric substitution patterns, and provides a single molecular source of white light with long lifetime (up to 163.5 ms) for the phosphorescent component, and high overall photoluminescence quantum yields (up to ΦL=20 %)

    Morphological Identification and Single-Cell Genomics of Marine Diplonemids

    Get PDF
    Recent global surveys of marine biodiversity have revealed that a group of organisms known as “marine diplonemids” constitutes one of the most abundant and diverse planktonic lineages 1. Though discovered over a decade ago 2, 3, their potential importance was unrecognized, and our knowledge remains restricted to a single gene amplified from environmental DNA, the 18S rRNA gene (small subunit SSU). Here, we use single-cell genomics (SCG) and microscopy to characterize ten marine diplonemids, isolated from a range of depths in the eastern North Pacific Ocean. Phylogenetic analysis confirms that the isolates reflect the entire range of marine diplonemid diversity, and comparisons to environmental SSU surveys show that sequences from the isolates range from rare to superabundant, including the single most common marine diplonemid known. SCG generated a total of ∼915 Mbp of assembled sequence across all ten cells and ∼4,000 protein-coding genes with homologs in the Kyoto Encyclopedia of Genes and Genomes (KEGG) orthology database, distributed across categories expected for heterotrophic protists. Models of highly conserved genes indicate a high density of non-canonical introns, lacking conventional GT-AG splice sites. Mapping metagenomic datasets 4 to SCG assemblies reveals virtually no overlap, suggesting that nuclear genomic diversity is too great for representative SCG data to provide meaningful phylogenetic context to metagenomic datasets. This work provides an entry point to the future identification, isolation, and cultivation of these elusive yet ecologically important cells. The high density of nonconventional introns, however, also portends difficulty in generating accurate gene models and highlights the need for the establishment of stable cultures and transcriptomic analyses. © 2016 Elsevier Lt

    Superorganisms of the protist kingdom : a new level of biological organization

    Get PDF
    The concept of superorganism has a mixed reputation in biology-for some it is a convenient way of discussing supra-organismal levels of organization, and for others, little more than a poetic metaphor. Here, I show that a considerable step forward in the understanding of superorganisms results from a thorough review of the supra-organismal levels of organization now known to exist among the “unicellular” protists. Limiting the discussion to protists has enormous advantages: their bodies are very well studied and relatively simple (as compared to humans or termites, two standard examples in most discussions about superorganisms), and they exhibit an enormous diversity of anatomies and lifestyles. This allows for unprecedented resolution in describing forms of supra-organismal organization. Here, four criteria are used to differentiate loose, incidental associations of hosts with their microbiota from “actual” superorganisms: (1) obligatory character, (2) specific spatial localization of microbiota, (3) presence of attachment structures and (4) signs of co-evolution in phylogenetic analyses. Three groups-that have never before been described in the philosophical literature-merit special attention: Symbiontida (also called Postgaardea), Oxymonadida and Parabasalia. Specifically, it is argued that in certain cases-for Bihospites bacati and Calkinsia aureus (symbiontids), Streblomastix strix (an oxymonad), Joenia annectens and Mixotricha paradoxa (parabasalids) and Kentrophoros (a ciliate)-it is fully appropriate to describe the whole protist-microbiota assocation as a single organism (“superorganism”) and its elements as “tissues” or, arguably, even “organs”. To account for this level of biological complexity, I propose the term “structured superorganism”

    Molecular Phylogeny and Evolution of Parabasalia with Improved Taxon Sampling and New Protein Markers of Actin and Elongation Factor-1α

    Get PDF
    BACKGROUND: Inferring the evolutionary history of phylogenetically isolated, deep-branching groups of taxa-in particular determining the root-is often extraordinarily difficult because their close relatives are unavailable as suitable outgroups. One of these taxonomic groups is the phylum Parabasalia, which comprises morphologically diverse species of flagellated protists of ecological, medical, and evolutionary significance. Indeed, previous molecular phylogenetic analyses of members of this phylum have yielded conflicting and possibly erroneous inferences. Furthermore, many species of Parabasalia are symbionts in the gut of termites and cockroaches or parasites and therefore formidably difficult to cultivate, rendering available data insufficient. Increasing the numbers of examined taxa and informative characters (e.g., genes) is likely to produce more reliable inferences. PRINCIPAL FINDINGS: Actin and elongation factor-1α genes were identified newly from 22 species of termite-gut symbionts through careful manipulations and seven cultured species, which covered major lineages of Parabasalia. Their protein sequences were concatenated and analyzed with sequences of previously and newly identified glyceraldehyde-3-phosphate dehydrogenase and the small-subunit rRNA gene. This concatenated dataset provided more robust phylogenetic relationships among major groups of Parabasalia and a more plausible new root position than those previously reported. CONCLUSIONS/SIGNIFICANCE: We conclude that increasing the number of sampled taxa as well as the addition of new sequences greatly improves the accuracy and robustness of the phylogenetic inference. A morphologically simple cell is likely the ancient form in Parabasalia as opposed to a cell with elaborate flagellar and cytoskeletal structures, which was defined as most basal in previous inferences. Nevertheless, the evolution of Parabasalia is complex owing to several independent multiplication and simplification events in these structures. Therefore, systematics based solely on morphology does not reflect the evolutionary history of parabasalids

    The 2024 Outline of Fungi and fungus-like taxa

    Get PDF
    With the simultaneous growth in interest from the mycological community to discover fungal species and classify them, there is also an important need to assemble all taxonomic information onto common platforms. Fungal classification is facing a rapidly evolving landscape and organizing genera into an appropriate taxonomic hierarchy is central to better structure a unified classification scheme and avoid incorrect taxonomic inferences. With this in mind, the Outlines of Fungi and fungus-like taxa (2020, 2022) were published as an open-source taxonomic scheme to assist mycologists to better understand the taxonomic position of species within the Fungal Kingdom as well as to improve the accuracy and consistency of our taxonomic language. In this paper, the third contribution to the series of Outline of Fungi and fungus-like taxa prepared by the Global Consortium for the Classification of Fungi and fungus-like taxa is published. The former is updated considering our previous reviews and the taxonomic changes based on recent taxonomic work. In addition, it is more comprehensive and derives more input and consensus from a larger number of mycologists worldwide. Apart from listing the position of a particular genus in a taxonomic level, nearly 1000 notes are provided for newly established genera and higher taxa introduced since 2022. The notes section emphasizes on recent findings with corresponding references, discusses background information to support the current taxonomic status and some controversial taxonomic issues are also highlighted. To elicit maximum taxonomic information, notes/taxa are linked to recognized databases such as Index Fungorum, Faces of Fungi, MycoBank and GenBank, Species Fungorum and others. A new feature includes links to Fungalpedia, offering notes in the Compendium of Fungi and fungus-like Organisms. When specific notes are not provided, links are available to webpages and relevant publications for genera or higher taxa to ease data accessibility. Following the recent synonymization of Caulochytriomycota under Chytridiomycota, with Caulochytriomycetes now classified as a class within the latter, based on formally described and currently accepted data, the Fungi comprises 19 Phyla, 83 classes, 1,220 families, 10,685 genera and ca 140,000 species. Of the genera, 39.5% are monotypic and this begs the question whether mycologists split genera unnecessarily or are we going to find other species in these genera as more parts of the world are surveyed? They are 433 speciose genera with more than 50 species. The document also highlights discussion of some important topics including number of genera categorized as incertae sedis status in higher level fungal classification. The number of species at the higher taxonomic level has always been a contentious issue especially when mycologists consider either a lumping or a splitting approach and herein we provide figures. Herein a summary of updates in the outline of Basidiomycota is provided with discussion on whether there are too many genera of Boletales, Ceratobasidiaceae, and speciose genera such as Colletotrichum. Specific case studies deal with Cortinarius, early diverging fungi, Glomeromycota, a diverse early divergent lineage of symbiotic fungi, Eurotiomycetes, marine fungi, Myxomycetes, Phyllosticta, Hymenochaetaceae and Polyporaceae and the longstanding practice of misapplying intercontinental conspecificity. The outline will aid to better stabilize fungal taxonomy and serves as a necessary tool for mycologists and other scientists interested in the classification of the Fungi
    corecore