1,096 research outputs found
Characterization of polyacrylonitrile ultrafiltration membranes
Various methods have been used to characterize ultrafiltration membranes, such as gas flux measurements, (field emission) scanning electron microscopy, permporometry and liquid-liquid displacement. Significant differences in the pore size distributions determined from permporometry and liquid-liquid displacement were found
Free energy calculations of small molecules in dense amorphous polymers. Effect on the initial guess configuration in molecular dynamics studies
The excess free energy of small molecules in the amorphous polymers poly(ethylene) and poly(dimethylsiloxane) was calculated, using the test-particle-insertion method. The method was applied to polymer configurations obtained from molecular dynamics simulations with differently prepared initial guess configurations. It was found that the calculated solubility coefficients strongly depend on the quality of the initial guess configuration. Slow compression of dilute systems, during which process only the repulsive parts of the nonbonded Lennard-Jones potentials are taken into account, yields polymer melts which are better relaxed, and which offer lower solubilities for guest molecules compared with polymer melts generated at the experimental density or prepared by compressing boxes with soft-core nonbonded potentials. For the last two methods initial stresses relax by straining the internal modes (bond angles, torsion angles) of the chain
Modeling electrodialysis and a photochemical process for their integration in saline wastewater treatment.
Oxidation processes can be used to treat industrial wastewater containing non-biodegradable organic compounds. However, the presence of dissolved salts may inhibit or retard the treatment process. In this study, wastewater desalination by electrodialysis (ED) associated with an advanced oxidation process (photo-Fenton) was applied to an aqueous NaCl solution containing phenol. The influence of process variables on the demineralization factor was investigated for ED in pilot scale and a correlation was obtained between the phenol, salt and water fluxes with the driving force. The oxidation process was investigated in a laboratory batch reactor and a model based on artificial neural networks was developed by fitting the experimental data describing the reaction rate as a function of the input variables. With the experimental parameters of both processes, a dynamic model was developed for ED and a continuous model, using a plug flow reactor approach, for the oxidation process. Finally, the hybrid model simulation could validate different scenarios of the integrated system and can be used for process optimization
Local and chain dynamics in miscible polymer blends: A Monte Carlo simulation study
Local chain structure and local environment play an important role in the
dynamics of polymer chains in miscible blends. In general, the friction
coefficients that describe the segmental dynamics of the two components in a
blend differ from each other and from those of the pure melts. In this work, we
investigate polymer blend dynamics with Monte Carlo simulations of a
generalized bond-fluctuation model, where differences in the interaction
energies between non-bonded nearest neighbors distinguish the two components of
a blend. Simulations employing only local moves and respecting a non-bond
crossing condition were carried out for blends with a range of compositions,
densities, and chain lengths. The blends investigated here have long-chain
dynamics in the crossover region between Rouse and entangled behavior. In order
to investigate the scaling of the self-diffusion coefficients, characteristic
chain lengths are calculated from the packing length of the
chains. These are combined with a local mobility determined from the
acceptance rate and the effective bond length to yield characteristic
self-diffusion coefficients . We find that the
data for both melts and blends collapse onto a common line in a graph of
reduced diffusion coefficients as a function of reduced chain
length . The composition dependence of dynamic properties is
investigated in detail for melts and blends with chains of length twenty at
three different densities. For these blends, we calculate friction coefficients
from the local mobilities and consider their composition and pressure
dependence. The friction coefficients determined in this way show many of the
characteristics observed in experiments on miscible blends.Comment: 12 pages, 13 figures, editorial change
Transitions of tethered polymer chains: A simulation study with the bond fluctuation lattice model
A polymer chain tethered to a surface may be compact or extended, adsorbed or
desorbed, depending on interactions with the surface and the surrounding
solvent. This leads to a rich phase diagram with a variety of transitions. To
investigate these transitions we have performed Monte Carlo simulations of a
bond-fluctuation model with Wang-Landau and umbrella sampling algorithms in a
two-dimensional state space. The simulations' density of states results have
been evaluated for interaction parameters spanning the range from good to poor
solvent conditions and from repulsive to strongly attractive surfaces. In this
work, we describe the simulation method and present results for the overall
phase behavior and for some of the transitions. For adsorption in good solvent,
we compare with Metropolis Monte Carlo data for the same model and find good
agreement between the results. For the collapse transition, which occurs when
the solvent quality changes from good to poor, we consider two situations
corresponding to three-dimensional (hard surface) and two-dimensional (very
attractive surface) chain conformations, respectively. For the hard surface, we
compare tethered chains with free chains and find very similar behavior for
both types of chains. For the very attractive surface, we find the
two-dimensional chain collapse to be a two-step transition with the same
sequence of transitions that is observed for three-dimensional chains: a
coil-globule transition that changes the overall chain size is followed by a
local rearrangement of chain segments.Comment: 17 pages, 12 figures, to appear in J. Chem. Phy
Macroscopic Symmetry Group Describes Josephson Tunneling in Twinned Crystals
A macroscopic symmetry group describing the superconducting state of an
orthorhombically twinned crystal of YBCO is introduced. This macroscopic
symmetry group is different for different symmetries of twin boundaries.
Josephson tunneling experiments performed on twinned crystals of YBCO determine
this macroscopic symmetry group and hence determine the twin boundary symmetry
(but do not experimentally determine whether the microscopic order parameter is
primarily d- or s-wave). A consequence of the odd-symmetry twin boundaries in
YBCO is the stability of vortices containing one half an elementary flux
quantum at the intersection of a twin boundary and certain grain boundaries.Comment: 6 pages, to be published in the Proceedings of the MOS96 Conference
in the Journal of Low Temperature Physic
Electro-extractive fermentation for efficient biohydrogen production
Electrodialysis, an electrochemical membrane technique, was found to prolong and enhance the production of biohydrogen and purified organic acids via the anaerobic fermentation of glucose by Escherichia coli. Through the design of a model electrodialysis medium using cationic buffer, pH was precisely controlled electrokinetically, i.e. by the regulated extraction of acidic products with coulombic efficiencies of organic acid recovery in the range 50–70% maintained over continuous 30-day experiments. Contrary to\ud
previous reports, E. coli produced H2 after aerobic growth in minimal medium without inducers and with a mixture of organic acids dominated by butyrate. The selective separation of organic acids from fermentation provides a potential nitrogen-free carbon source for further biohydrogen production in a parallel photofermentation. A parallel study incorporated this fermentation system into an integrated biohydrogen refinery (IBR) for the conversion of organic waste to hydrogen and energy
Evolution of local recruitment and its consequences for marine populations
Advantages of dispersal on the scales that are possible in a long pelagic larval period are not apparent, even for benthic species. An alternative hypothesis is that wide dispersal may be an incidental byproduct of an ontogenetic migration from and then back to the parental habitat. Under this hypothesis, the water column is a better habitat than the bottom for early development. Because the parental area is often an especially favorable habitat for juveniles and adults, selection may even favor larval retention or larval return rather than dispersal. Where larval capabilities and currents permit, a high percentage of recruits may then be produced from local adults. Expected consequences of a high proportion of local recruitment are stronger links between stock and recruitment, greater vulnerability to recruitment overfishing and local modifications of habitat, greater local benefits from fishery reserves, and possibly more localized adaptation within populations. Export of some larvae is consistent with a high proportion of retained or returning larvae, could stabilize populations linked by larval exchange, and provide connectivity between marine reserves. Even a small amount of larval export could account for the greater gene flow, large ranges, and long evolutionary durations seen in species with long pelagic larval stages
Probing structural relaxation in complex fluids by critical fluctuations
Complex fluids, such as polymer solutions and blends, colloids and gels, are
of growing interest in fundamental and applied soft-condensed-matter science. A
common feature of all such systems is the presence of a mesoscopic structural
length scale intermediate between atomic and macroscopic scales. This
mesoscopic structure of complex fluids is often fragile and sensitive to
external perturbations. Complex fluids are frequently viscoelastic (showing a
combination of viscous and elastic behaviour) with their dynamic response
depending on the time and length scales. Recently, non-invasive methods to
infer the rheological response of complex fluids have gained popularity through
the technique of microrheology, where the diffusion of probe spheres in a
viscoelastic fluid is monitored with the aid of light scattering or microscopy.
Here we propose an alternative to traditional microrheology that does not
require doping of probe particles in the fluid (which can sometimes drastically
alter the molecular environment). Instead, our proposed method makes use of the
phenomenon of "avoided crossing" between modes associated with the structural
relaxation and critical fluctuations that are spontaneously generated in the
system.Comment: 4 pages, 4 figure
- …
