54 research outputs found
Engineering an endocrine Neo-Pancreas by repopulation of a decellularized rat pancreas with islets of Langerhans
Decellularization of pancreata and repopulation of these non-immunogenic
matrices with islets and endothelial cells could provide transplantable,
endocrine Neo- Pancreata. In this study, rat pancreata were perfusion
decellularized and repopulated with intact islets, comparing three perfusion
routes (Artery, Portal Vein, Pancreatic Duct). Decellularization effectively
removed all cellular components but conserved the pancreas specific
extracellular matrix. Digital subtraction angiography of the matrices showed a
conserved integrity of the decellularized vascular system but a contrast
emersion into the parenchyma via the decellularized pancreatic duct. Islets
infused via the pancreatic duct leaked from the ductular system into the peri-
ductular decellularized space despite their magnitude. TUNEL staining and
Glucose stimulated insulin secretion revealed that islets were viable and
functional after the process. We present the first available protocol for
perfusion decellularization of rat pancreata via three different perfusion
routes. Furthermore, we provide first proof-of-concept for the repopulation of
the decellularized rat pancreata with functional islets of Langerhans. The
presented technique can serve as a bioengineering platform to generate
implantable and functional endocrine Neo-Pancreata
Bioreactor technologies to support liver function in vitro
Liver is a central nexus integrating metabolic and immunologic homeostasis in the human body, and the direct or indirect target of most molecular therapeutics. A wide spectrum of therapeutic and technological needs drives efforts to capture liver physiology and pathophysiology in vitro, ranging from prediction of metabolism and toxicity of small molecule drugs, to understanding off-target effects of proteins, nucleic acid therapies, and targeted therapeutics, to serving as disease models for drug development. Here we provide perspective on the evolving landscape of bioreactor-based models to meet old and new challenges in drug discovery and development, emphasizing design challenges in maintaining long-term liver-specific function and how emerging technologies in biomaterials and microdevices are providing new experimental models.National Institutes of Health (U.S.) (R01 EB010246)National Institutes of Health (U.S.) (P50-GM068762-08)National Institutes of Health (U.S.) (R01-ES015241)National Institutes of Health (U.S.) (P30-ES002109)5UH2TR000496-02National Science Foundation (U.S.). Emergent Behaviors of Integrated Cellular Systems (CBET-0939511)United States. Defense Advanced Research Projects Agency. Microphysiological Systems Program (W911NF-12-2-0039
The role of hepatectomy for synchronous liver metastases from pancreatic adenocarcinoma
The role of hepatectomy for synchronous liver metastases from pancreatic adenocarcinoma
Incidence and risk factors of hiatal hernia following resection for gastric and esophageal cancer
Liver transplantation or liver resection for cirrhotic patients with hepatocellular carcinoma: comparison of long-term survival
Liver transplantation or liver resection for cirrhotic patients with hepatocellular carcinoma: comparison of long-term survival
Liver transplantation or liver resection for cirrhotic patients with hepatocellular carcinoma: comparison of long-term survival
- …
