749 research outputs found
Study of trivial compiler equivalence on C++ object-oriented mutation operators
Trivial Compiler Equivalence (TCE) has been recently proposed as an effective technique to detect equivalences between programs, where two or more programs are equivalent if the compiler produces the same binary code. Mutation testing can greatly benefit from TCE as a way to reveal some equivalent and duplicate mutants, which traditionally hinder the applicability of the technique. For instance, previous research has shown that about 28% of the mutants generated by traditional mutation operators in C programs can be removed using TCE. However, the effectiveness of TCE has not been assessed with class-level operators, where the percentage of equivalent mutants is known to be higher than when using traditional ones. In this paper, we present an empirical study on the effectiveness of TCE at identifying equivalent and duplicate mutants using C++ class operators. The results show that TCE is helpful to discard equivalent and duplicate mutants: 241 out of 1,987 (12%) in our study, including 189 out of 684 (27.6%) manually-identified equivalent mutants. Large differences were observed among the different case studies, especially in the detection rate of equivalent mutants, which ranged from 4% to 45%
Long non-coding RNAs: spatial amplifiers that control nuclear structure and gene expression
Over the past decade, it has become clear that mammalian genomes encode thousands of long non-coding RNAs (lncRNAs), many of which are now implicated in diverse biological processes. Recent work studying the molecular mechanisms of several key examples — including Xist, which orchestrates X chromosome inactivation — has provided new insights into how lncRNAs can control cellular functions by acting in the nucleus. Here we discuss emerging mechanistic insights into how lncRNAs can regulate gene expression by coordinating regulatory proteins, localizing to target loci and shaping three-dimensional (3D) nuclear organization. We explore these principles to highlight biological challenges in gene regulation, in which lncRNAs are well-suited to perform roles that cannot be carried out by DNA elements or protein regulators alone, such as acting as spatial amplifiers of regulatory signals in the nucleus
Microstructure and properties of aluminum alloy2090 weldments
ABSTRACT. The effects of welding on aluminum alloy 2090 are examined along with the metallurgical changes associated with welding and aging. The results of the study show that the gas tungsten arc (GTA) and electron beam (EB) weldment properties are controlled by the precipitate size and distribution. There is a tradeoff between strength and elongation. In the as-welded condition, solid solution strengthening is the primary strengthening mechanism present. As a result, the weldment strengths are less than 200 MPa (29 ksi), but the elongations are greater than 4%. In the postweld aged condition, an inhomogeneous distribution of solutes results in an inhomogeneous distribution of precipitates, causing strain localization. Although the weldment strengths increase, the weldment elongations decrease precipitously. The peak strengths of EB and GTA weldments are obtained aging at 160°C (320°F) for 32 h with 75% joint efficiency and at 190°C (374°F) for 16 h with 65% joint efficiency, respectively. Aging at 230 C C (446°F) leads to coarsening of precipitates as well as the intermetallic constituents; the weldment strengths deteriorate rapidly, but the elongations improve. The best overall weldment properties are obtained in the solution heat treated and aged conditions, and are associated with a homogeneous distribution of strengthening precipitates
Protective paraspeckle hyper-assembly downstream of TDP-43 loss of function in amyotrophic lateral sclerosis
Background Paraspeckles are subnuclear bodies assembled on a long non-coding RNA (lncRNA) NEAT1. Their enhanced formation in spinal neurons of sporadic amyotrophic lateral sclerosis (ALS) patients has been reported but underlying mechanisms are unknown. The majority of ALS cases are characterized by TDP-43 proteinopathy. In current study we aimed to establish whether and how TDP-43 pathology may augment paraspeckle assembly. Methods Paraspeckle formation in human samples was analysed by RNA-FISH and laser capture microdissection followed by qRT-PCR. Mechanistic studies were performed in stable cell lines, mouse primary neurons and human embryonic stem cell-derived neurons. Loss and gain of function for TDP-43 and other microRNA pathway factors were modelled by siRNA-mediated knockdown and protein overexpression. Results We show that de novo paraspeckle assembly in spinal neurons and glial cells is a hallmark of both sporadic and familial ALS with TDP-43 pathology. Mechanistically, loss of TDP-43 but not its cytoplasmic accumulation or aggregation augments paraspeckle assembly in cultured cells. TDP-43 is a component of the microRNA machinery, and recently, paraspeckles have been shown to regulate pri-miRNA processing. Consistently, downregulation of core protein components of the miRNA pathway also promotes paraspeckle assembly. In addition, depletion of these proteins or TDP-43 results in accumulation of endogenous dsRNA and activation of type I interferon response which also stimulates paraspeckle formation. We demonstrate that human or mouse neurons in vitro lack paraspeckles, but a synthetic dsRNA is able to trigger their de novo formation. Finally, paraspeckles are protective in cells with compromised microRNA/dsRNA metabolism, and their assembly can be promoted by a small-molecule microRNA enhancer. Conclusions Our study establishes possible mechanisms behind paraspeckle hyper-assembly in ALS and suggests their utility as therapeutic targets in ALS and other diseases with abnormal metabolism of microRNA and dsRNA
Social Influences on the Degree of Stop Voicing in Inland California
This paper examines social influences on the realization of voiced stops in inland California. We analyzed sociolinguistic interviews with 62 white residents from Redding, Merced, and Bakersfield (which mark the northern, middle, and southern points of California’s Central Valley), balanced for sex, class, age, and whether a speaker earns their livelihood off the land. We follow Jaciewicz, Fox, and Lyle (2009) in examining the extent of voicing during stop closures (duration of voicing during closure relative to total duration of closure), and also adopt a novel measure of the magnitude of voicing, which captures the intensity of a stop closure relative to the following vowel. Mixed effects linear regression models were constructed for both voicing measures, with a number of linguistic and social predictors considered in addition to random effects. Results show that the extent of voicing measure was insufficiently sensitive to differentiate speakers, as nearly everyone exhibited voicing throughout the closure. The voicing intensity measure, however, was shown to reveal significant effects of place of articulation, closure duration, and ties to the land. Most importantly, speakers who earn their livelihood off the land exhibit significantly stronger voiced stops than those who do not. We argue that even though strongly voiced stops likely entered California during a large-scale in-migration of Southerners during the Dust Bowl (Jaciewicz et al. 2009 report more extensive voicing among women from the South compared to the Midwest), they have since taken on locally significant indexicalities reflecting the values and ideals of land-oriented communities throughout the Central Valley (and do not simply mean “Southern”). Our findings also raise questions about where the linguistic limits of socially structured variation lie, given the systematic social patterning observed here for low-level phonetic details (i.e., voicing intensity) that likely operate far below the level of consciousness
Directed motor-auditory EEG connectivity is modulated by music tempo
Beat perception is fundamental to how we experience music, and yet the mechanism behind this spontaneous building of the internal beat representation is largely unknown. Existing findings support links between the tempo (speed) of the beat and enhancement of electroencephalogram (EEG) activity at tempo-related frequencies, but there are no studies looking at how tempo may affect the underlying long-range interactions between EEG activity at different electrodes. The present study investigates these long-range interactions using EEG activity recorded from 21 volunteers listening to music stimuli played at 4 different tempi (50, 100, 150 and 200 beats per minute). The music stimuli consisted of piano excerpts designed to convey the emotion of “peacefulness”. Noise stimuli with an identical acoustic content to the music excerpts were also presented for comparison purposes. The brain activity interactions were characterized with the imaginary part of coherence (iCOH) in the frequency range 1.5–18 Hz (δ, θ, α and lower β) between all pairs of EEG electrodes for the four tempi and the music/noise conditions, as well as a baseline resting state (RS) condition obtained at the start of the experimental task. Our findings can be summarized as follows: (a) there was an ongoing long-range interaction in the RS engaging fronto-posterior areas; (b) this interaction was maintained in both music and noise, but its strength and directionality were modulated as a result of acoustic stimulation; (c) the topological patterns of iCOH were similar for music, noise and RS, however statistically significant differences in strength and direction of iCOH were identified; and (d) tempo had an effect on the direction and strength of motor-auditory interactions. Our findings are in line with existing literature and illustrate a part of the mechanism by which musical stimuli with different tempi can entrain changes in cortical activity
Recommended from our members
Can houseplants improve indoor air quality by removing CO2 and increasing relative humidity?
High indoor CO2 concentrations and low relative humidity (RH) create an array of well-documented human health issues. Therefore, assessing houseplants’ potential as a low-cost approach to CO2 removal and increasing RH is important.
We investigated how environmental factors such as ’dry’ ( 0.30 m3 m-3) growing substrates, and indoor light levels (‘low’ 10 µmol m-2 s-1, ‘high’ 50 µmol m-2 s-1 and ‘very high’ 300 µmol m-2 s-1), influence the plants’ net CO2 assimilation (‘A’) and water-vapour loss. Seven common houseplant taxa – representing a variety of leaf types, metabolisms and sizes – were studied for their ability to assimilate CO2 across a range of indoor light levels. Additionally, to assess the plants’ potential contribution to RH increase, the plants’ evapo-transpiration (ET) was measured.
At typical ‘low’ indoor light levels ‘A’ rates were generally low (< 3.9 mg hr-1). Differences between ‘dry’ and ’wet’ plants at typical indoor light levels were negligible in terms of room-level impact. Light compensation points (i.e. light levels at which plants have positive ‘A’) were in the typical indoor light range (1-50 µmol m-2 s-1) only for two studied Spathiphyllum wallisii cultivars and Hedera helix; these plants would thus provide the best CO2 removal indoors. Additionally, increasing indoor light levels to 300 µmol m-2 s-1 would, in most species, significantly increase their potential to assimilate CO2. Species which assimilated the most CO2 also contributed most to increasing RH
Protective paraspeckle hyper-assembly downstream of TDP-43 loss of function in amyotrophic lateral sclerosis
BACKGROUND: Paraspeckles are subnuclear bodies assembled on a long non-coding RNA (lncRNA) NEAT1. Their enhanced formation in spinal neurons of sporadic amyotrophic lateral sclerosis (ALS) patients has been reported but underlying mechanisms are unknown. The majority of ALS cases are characterized by TDP-43 proteinopathy. In current study we aimed to establish whether and how TDP-43 pathology may augment paraspeckle assembly. METHODS: Paraspeckle formation in human samples was analysed by RNA-FISH and laser capture microdissection followed by qRT-PCR. Mechanistic studies were performed in stable cell lines, mouse primary neurons and human embryonic stem cell-derived neurons. Loss and gain of function for TDP-43 and other microRNA pathway factors were modelled by siRNA-mediated knockdown and protein overexpression. RESULTS: We show that de novo paraspeckle assembly in spinal neurons and glial cells is a hallmark of both sporadic and familial ALS with TDP-43 pathology. Mechanistically, loss of TDP-43 but not its cytoplasmic accumulation or aggregation augments paraspeckle assembly in cultured cells. TDP-43 is a component of the microRNA machinery, and recently, paraspeckles have been shown to regulate pri-miRNA processing. Consistently, downregulation of core protein components of the miRNA pathway also promotes paraspeckle assembly. In addition, depletion of these proteins or TDP-43 results in accumulation of endogenous dsRNA and activation of type I interferon response which also stimulates paraspeckle formation. We demonstrate that human or mouse neurons in vitro lack paraspeckles, but a synthetic dsRNA is able to trigger their de novo formation. Finally, paraspeckles are protective in cells with compromised microRNA/dsRNA metabolism, and their assembly can be promoted by a small-molecule microRNA enhancer. CONCLUSIONS: Our study establishes possible mechanisms behind paraspeckle hyper-assembly in ALS and suggests their utility as therapeutic targets in ALS and other diseases with abnormal metabolism of microRNA and dsRNA
- …
