2,364 research outputs found

    The discovery of 50 minute periodic absorption events from 4U1915-05

    Get PDF
    The steady flux from 4U1916-05 which undergoes periodic absorption dips every 50 minutes was demonstrated. This period represents the underlying orbital period of the system. It is suggested that variations in the depth and duration of these events are caused by a bulge in the edge of the accretion disk, at the point where the gas stream impacts the disk. The mass losing star in this system is probably a low mass white dwarf. The spectrum of the dips indicates that the metallicity of the absorbing material is at least a factor 17 below solar values

    X-ray spectroscopy of late-type stars

    Get PDF
    The solid state spectrometer on the Einstein Observatory determined .4 - 4.5 keV spectra for Capella, Algol and 6 RS CVn binaries. All show evidence for a bimodal distribution of emission measure with temperature with one component approximately 7 million degrees and one approximately 40 million degrees. The spread in values of both luminosity and emission measure is 10 for the low temperature component and approximately 500 for the high temperature component. Line emission due to Fe can be identified in most of them and abundances of Si, S and Fe are consistent with approximately solar values in all cases. Estimates indicate dimensions of the emitting regions are on the order of the stellar size and the binary separation for the low and high temperature components, respectively, unless the pressures are high. Variations in the flux were observed, mostly in the hard component for the RS CVn binaries, in the soft component for Capella. A flare was observed during primary eclipse of Algol. The possibility is discussed that the other variations could all be due to intrinsic variability with a time scale of hours-days rather than eclipse or modulation with photometric phase

    Stellar X-Ray Polarimetry

    Get PDF
    Most of the stellar end-state black holes, pulsars, and white dwarfs that are X-ray sources should have polarized X-ray fluxes. The degree will depend on the relative contributions of the unresolved structures. Fluxes from accretion disks and accretion disk corona may be polarized by scattering. Beams and jets may have contributions of polarized emission in strong magnetic fields. The Gravity and Extreme Magnetism Small Explorer (GEMS) will study the effects on polarization of strong gravity of black holes and strong magnetism of neutron stars. Some part of the flux from compact stars accreting from companion stars has been reflected from the companion, its wind, or accretion streams. Polarization of this component is a potential tool for studying the structure of the gas in these binary systems. Polarization due to scattering can also be present in X-ray emission from white dwarf binaries and binary normal stars such as RS CVn stars and colliding wind sources like Eta Car. Normal late type stars may have polarized flux from coronal flares. But X-ray polarization sensitivity is not at the level needed for single early type stars

    Differences between the Two Anomalous X-Ray Pulsars: Variations in the Spin Down Rate of 1E 1048.1-5937 and An Extended Interval of Quiet Spin Down in 1E 2259+586

    Get PDF
    We analysed the RXTE archival data of 1E 1048.1-5937 covering a time span of more than one year. The spin down rate of this source decreases by 30 percent during the observation. We could not resolve the X-ray flux variations because of contamination by Eta Carinae. We find that the level of pulse frequency fluctuations of 1E 1048.1-5937 is consistent with typical noise levels of accretion powered pulsars. Recent RXTE observations of 1E 2259+586 have shown a constant spin down with a very low upper limit on timing noise. We used the RXTE archival X-ray observations of 1E 2259+586 to show that the intrinsic X-ray luminosity times series is also stable, with an rms fractional variation of less than 15 percent. The source could have been in a quiet phase of accretion with a constant X-ray luminosity and spin down rate.Comment: MNRAS in pres

    How committees of experts interact with the outside world: some theory, and evidence from the FOMC

    Get PDF
    Some committees are made up of experts, persons who care both about the matter at hand and about coming across as able decision- makers. We derive two propositions about the way members of such committees interact with the outside world. First, they would like to conceal disagreement from the public. That is, once the decision has been reached, they show a united front to the outside world. Second, if such committees are required to become transparent, e.g., by publishing verbatim transcripts of their meetings, members will organize pre-meetings away from the public eye. Large part of the paper is dedicated to a case study of the U.S. Federal Open Market Committee in the United States. It provides suggestive evidence supporting the two propositions

    Accretion powered X-ray pulsars

    Get PDF
    A unified description of the properties of 14 X-ray pulsars is presented and compared with the current theoretical understanding of these systems. The sample extends over six orders of magnitude in luminosity, with the only trend in the phase averaged spectra being that the lower luminosity systems appear to have less abrupt high energy cutoffs. There is no correlation of luminosity with power law index, high energy cutoff energy or iron line EW. Detailed pulse phase spectroscopy is given for five systems

    The Pattern of Correlated X-ray Timing and Spectral Behavior in GRS 1915+105

    Get PDF
    From data obtained from the PCA in the 2-11 keV and 11-30.5 keV energy range, GRS 1915+105 is seen during RXTE observations between 1996 May and October on two separate branches in a hardness intensity diagram. On the hard branch, GRS 1915+105 exhibits narrow quasi-periodic oscillations ranging from 0.5 to 6 Hz with Δνν0.2{\Delta \nu \over \nu} \sim 0.2. The QPOs are observed over intensities ranging from about 6,000 to 20,000 counts s1^{-1} in the 2 - 12.5 keV energy band, indicating a strong dependence on source intensity. Strong harmonics are seen, especially, at lower frequencies. As the QPO frequency increases, the harmonic feature weakens and disappears. On the soft branch, narrow QPOs are absent and the low frequency component of the power density spectrum is approximated by a power-law, with index 1.25\sim -1.25 for low count rates and 1.5\sim -1.5 for high count rates (\gta 18000 cts/s). Occasionally, a broad peaked feature in the 1-6 Hz frequency range is also observed on this branch. The source was probably in the very high state similar to those of other black hole candidates. Thermal-viscous instabilities in accretion disk models do not predict the correlation of the narrow QPO frequency and luminosity unless the fraction of luminosity from the disk decreases with the total luminosity.Comment: ApJ Lett accepte
    corecore