7,088 research outputs found

    MgII Absorption Lines in z=2.974 Damped Lyman-alpha System toward Gravitationally Lensed QSO APM 08279+5255: Detection of Small-scale Structure in MgII Absorbing Clouds

    Get PDF
    1.02-1.16 micron spectra (R ~ 7,000) of the gravitationally lensed QSO APM 08279+5255 at z_em=3.911 were obtained during the commissioning run of IRCS, the 1-5 micron near-infrared camera and spectrograph for the Subaru 8.2 m Telescope. Strong MgII doublet at 2976,2800 angstrom and FeII (2600 angstrom), FeII (2587 angstrom) absorption lines at z_abs=2.974 were clearly detected in the rest-frame UV spectra, confirming the presence of a damped Lyman-alpha system at the redshift as suggested by Petitjean et al. Also MgI (2853 angstrom) absorption line is probably detected. An analysis of the absorption lines including velocity decomposition was performed. This is a first detailed study of MgII absorption system at high redshift (z > 2.5) where the MgII doublet shifts into the near-infrared in the observer's frame. The spectra of the lensed QSO pair A and B with 0.38 arcsec separation were resolved in some exposure frames under excellent seeing condition. We extracted the MgII doublet spectra of A and B separately. Although three velocity components (v ~ -28, +5, +45 km/s) are known to exist in this MgII system (Petitjean et al.), the v ~ +45 km/s absorption line was not detected toward source B, showing that the +45 km/s MgII cloud lies only in the line of sight to the source A. Our results suggests that the size of the MgII absorbing clouds is as small as 200 pc, which corresponds to the separation of A and B at the redshift of the absorber. This is the first direct detection of the small-scale structure of MgII clouds at high-redshift, confirming the estimated cloud sizes from photoionization model by Churchill and Charlton.Comment: ApJ in press (Vol.569, 20 April 2002 issue

    Deep Near-Infrared Imaging af an Embedded Cluster in the Extreme Outer Galaxy: Census of Supernovae Triggered Star Formation

    Get PDF
    While conducting a near-infrared (NIR) survey of ``Digel Clouds'', which are thought to be located in the extreme outer Galaxy (EOG), Kobayashi & Tokunaga found star formation activity in ``Cloud 2'', a giant molecular cloud at the Galactic radius of ~ 20 kpc. Additional infrared imaging showed two embedded young clusters at the densest regions of the molecular cloud. Because the molecular cloud is located in the vicinity of a supernova remnant (SNR) HI shell, GSH 138-01-94, it was suggested that the star formation activity in Cloud 2 was triggered by this expanding HI shell. We obtained deep J (1.25 um), H (1.65 um) and K (2.2 um) images of one of the embedded clusters in Cloud 2 with high spatial resolution (FWHM ~0".3) and high sensitivity (K ~ 20 mag, 10 sigma). We identified 52 cluster members. The estimated stellar density (~ 10 pc^{-2}) suggests that the cluster is a T-association. This is the deepest NIR imaging of an embedded cluster in the EOG. The observed K-band luminosity function (KLF) suggests that the underlying initial mass function (IMF) of the cluster down to the detection limit of ~ 0.1 M_sun is not significantly different from the typical IMFs in the field and in the near-by star clusters. The overall characteristics of this cluster appears to be similar to those of other embedded clusters in the far outer Galaxy. The estimated age of the cluster from the KLF, which is less than 1 Myr, is consistent with the view that the star formation was triggered by the HI shell whose age was estimated at 4.3 Myr (Stil & Irwin). The 3-dimensional geometry of SNR shell, molecular cloud and the embedded cluster, which is inferred from our data, as well as the cluster age strongly suggest that the star formation in Cloud 2 was triggered by the SNR shell.Comment: 19pages, 8 figures, 1 table, accepted to ApJ. Full paper (pdf) with high resolution figures available at http://www.ioa.s.u-tokyo.ac.jp/~ck_yasui/papers/Cloud2N_1.pd

    EFFICIENCY OF ENERGY UTILIZATION OF VOLATILE FATTY ACIDS BY MATURE CATILE GIVEN A HAY OR HIGH-CONCENTRATE DIET

    Get PDF

    Infrared Imaging of the Gravitational Lens PG 1115+080 with the Subaru Telescope

    Full text link
    We present high spatial resolution images of the gravitational-lens system PG 1115+080 taken with the near-infrared camera (CISCO) on the Subaru telescope. The FWHM of the combined image is 0.320.''32 in the KK'-band, yielding spatial resolution of 0.140.''14 after a deconvolution procedure. This is a first detection of an extended emission adjacent to the A1/A2 components, indicating the presence of a fairly bright emission region with a characteristic angular radius of \sim 5 mas (40 pc). The near-infrared image of the Einstein ring was extracted in both the JJ and KK' bands. The JKJ-K' color is found to be significantly redder than that of a synthetic model galaxy with an age of 3 Gyr, the age of the universe at the quasar redshift.Comment: 11 pages, 6 figures. Accepted for publication in PASJ(2000

    Summary of the 13th IACHEC Meeting

    Get PDF
    We summarize the outcome of the 13th meeting of the International Astronomical Consortium for High Energy Calibration (IACHEC), held at Tenuta dei Ciclamini (Avigliano Umbro, Italy) in April 2018. Fifty-one scientists directly involved in the calibration of operational and future high-energy missions gathered during 3.5 days to discuss the current status of the X-ray payload inter-calibration and possible approaches to improve it. This summary consists of reports from the various working groups with topics ranging from the identification and characterization of standard calibration sources, multi-observatory cross-calibration campaigns, appropriate and new statistical techniques, calibration of instruments and characterization of background, and communication and preservation of knowledge and results for the benefit of the astronomical community.Comment: 12 page

    Near-infrared emission-line galaxies in the Hubble Deep Field North

    Get PDF
    We present the 2.12~μ\mum narrow-band image of the Hubble Deep Field North taken with the near-infrared camera (CISCO) on the Subaru telescope. Among five targets whose Hα\alpha or [O~{\sc iii}] emission lines are redshifted into our narrow-band range expected from their spectroscopic redshift, four of them have strong emission lines, especially for the two [O~{\sc iii}] emission-line objects. The remaining one target shows no Hα\alpha emission in spite of its bright rest-UV luminosity, indicating that this object is already under the post-starburst phase. The volume-averaged SFRSFR derived from the detected two Hα\alpha emission is roughly consistent with that evaluated from the rest-UV continuum.Comment: 12 pages, 7 figures. Accepted for publication in PASJ(2000

    Discovery of a flux-related change of the cyclotron line energy in Her X-1

    Get PDF
    We present the results of ten years of repeated measurements of the Cyclotron Resonance Scattering Feature (CRSF) in the spectrum of the binary X-ray pulsar Her X-1 and report the discovery of a positive correlation of the centroid energy of this absorption feature in pulse phase averaged spectra with source luminosity.Our results are based on a uniform analysis of observations bythe RXTE satellite from 1996 to 2005, using sufficiently long observations of 12 individual 35-day Main-On states of the source. The mean centroid energy E_c of the CRSF in pulse phase averaged spectra of Her X-1 during this time is around 40 keV, with significant variations from one Main-On state to the next. We find that the centroid energy of the CRSF in Her X-1 changes by ~5% in energy for a factor of 2 in luminosity. The correlation is positive, contrary to what is observed in some high luminosity transient pulsars. Our finding is the first significant measurement of a positive correlation between E_c and luminosity in any X-ray pulsar. We suggest that this behaviour is expected in the case of sub-Eddington accretion and present a calculation of a quantitative estimate, which is very consistent with the effect observed in Her X-1.We urge that Her X-1 is regularly monitored further and that other X-ray pulsars are investigated for a similar behaviour.Comment: 4 pages, 2 figures, accepted by A&A Letter

    Star Formation in the Extreme Outer Galaxy: Digel Cloud 2 Clusters

    Full text link
    As a first step for studying star formation in the extreme outer Galaxy (EOG), we obtained deep near-infrared images of two embedded clusters at the northern and southern CO peaks of Cloud 2, which is one of the most distant star forming regions in the outer Galaxy (galactic radius R_g ~ 19 kpc). With high spatial resolution (FWHM ~ 0".35) and deep imaging (K ~ 21 mag) with the IRCS imager at the Subaru telescope, we detected cluster members with a mass detection limit of < 0.1 M_{sun}, which is well into the substellar regime. These high quality data enables a comparison of EOG to those in the solar neighborhood on the same basis for the first time. Before interpreting the photometric result, we have first constructed the NIR color-color diagram (dwarf star track, classical T Tauri star (CTTS) locus, reddening law) in the Mauna Kea Observatory filter system and also for the low metallicity environment since the metallicity in EOG is much lower than those in the solar neighborhood. The estimated stellar density suggests that an ``isolated type'' star formation is ongoing in Cloud 2-N, while a ``cluster type'' star formation is ongoing in Cloud 2-S. Despite the difference of the star formation mode, other characteristics of the two clusters are found to be almost identical: (1) K-band luminosity function (KLF) of the two clusters are quite similar, as is the estimated IMF and ages (~ 0.5--1 Myr) from the KLF fitting, (2) the estimated star formation efficiencies (SFEs) for both clusters are typical compared to those of embedded clusters in the solar neighborhood (~ 10 %). The similarity of two independent clusters with a large separation (~ 25 pc) strongly suggest that their star formation activities were triggered by the same mechanism, probably the supernova remnant (GSH 138-01-94).Comment: 14pages, 11 figures; Accepted for publication in Ap

    AKARI observations of ice absorption bands towards edge-on young stellar objects

    Get PDF
    To investigate the composition and evolution of circumstellar ice around low-mass young stellar objects (YSOs), we observed ice absorption bands in the near infrared (NIR) towards eight YSOs ranging from class 0 to class II, among which seven are associated with edge-on disks. We performed slit-less spectroscopic observations using the grism mode of the InfraRed Camera (IRC) on board AKARI, which enables us to obtain full NIR spectra from 2.5 mu m to 5 mu m, including the CO2 band and the blue wing of the H2O band, which are inaccessible from the ground. We developed procedures to carefully process the spectra of targets with nebulosity. The spectra were fitted with polynomial baselines to derive the absorption spectra. The molecular absorption bands were then fitted with the laboratory database of ice absorption bands, considering the instrumental line profile and the spectral resolution of the grism dispersion element. Towards the class 0-I sources (L1527, IRC-L1041-2, and IRAS 04302), absorption bands of H2O, CO2, CO, and XCN are clearly detected. Column density ratios of CO2 ice and CO ice relative to H2O ice are 21-28% and 13-46%, respectively. If XCN is OCN-, its column density is as high as 2-6% relative to H2O ice. The HDO ice feature at 4.1 mu m is tentatively detected towards the class 0-I sources and HV Tau. Non-detections of the CH-stretching mode features around 3.5 mu m provide upper limits to the CH3OH abundance of 26% (L1527) and 42% (IRAS 04302) relative to H2O. We tentatively detect OCS ice absorption towards IRC-L1041-2. Towards class 0-I sources, the detected features should mostly originate in the cold envelope, while CO gas and OCN-could originate in the region close to the protostar, where there are warm temperatures and UV radiation. We detect H2O ice band towards ASR41 and 2MASSJ 1628137-243139, which are edge-on class II disks. We also detect H2O ice and CO2 ice towards HV Tau, HK Tau, and UY Aur, and tentatively detect CO gas features towards HK Tau and UY Aur
    corecore