468 research outputs found

    Planck Observations of M33

    Get PDF
    We have performed a comprehensive investigation of the global integrated flux density of M33 from radio to ultraviolet wavelengths, finding that the data between \sim100 GHz and 3 THz are accurately described by a single modified blackbody curve with a dust temperature of TdustT_\mathrm{dust} = 21.67±\pm0.30 K and an effective dust emissivity index of βeff\beta_\mathrm{eff} = 1.35±\pm0.10, with no indication of an excess of emission at millimeter/sub-millimeter wavelengths. However, sub-dividing M33 into three radial annuli, we found that the global emission curve is highly degenerate with the constituent curves representing the sub-regions of M33. We also found gradients in TdustT_\mathrm{dust} and βeff\beta_\mathrm{eff} across the disk of M33, with both quantities decreasing with increasing radius. Comparing the M33 dust emissivity with that of other Local Group members, we find that M33 resembles the Magellanic Clouds rather than the larger galaxies, i.e., the Milky Way and M31. In the Local Group sample, we find a clear correlation between global dust emissivity and metallicity, with dust emissivity increasing with metallicity. A major aspect of this analysis is the investigation into the impact of fluctuations in the Cosmic Microwave Background (CMB) on the integrated flux density spectrum of M33. We found that failing to account for these CMB fluctuations would result in a significant over-estimate of TdustT_\mathrm{dust} by \sim5 K and an under-estimate of βeff\beta_\mathrm{eff} by \sim0.4.Comment: Accepted for publication in MNRA

    Fuzzy short-run control charts

    Get PDF
    Statistical control charts are useful tools in monitoring the state of a manufacturing process. Control charts are used to plot process data and compare it to the limits set for the process. Points plotting outside these limits indicate an out-of-control condition. Standard control charting procedures, however, are limited in that they cannot take into account the case when data is of a fuzzy nature. Another limitation of standard charting methods is when the data produced by the process is short-run data. Often, the situation where the data is short-run occurs in conjunction with data that is considered fuzzy. This paper dicusses the development of a fuzzy control chartting technique, called short-Run α-cut p Control Chart, to account for fuzzy data in a short-run situation. The developed chart parameters accounted for the fuzzy nature of the data in a short-run situation. The parameters were validated by comparing the false alarm rates for various combinations of subgroup numbers (m) and subgroup sizes (n). It was shown that for every combination of m and n, the Short-Run α-cut p Control Chart limits produced a lower false alarm rate than that of the standard fuzzy α-cut control chart.Peer Reviewe

    Constraints on Free-Free Emission from Anomalous Microwave Emission Sources in the Perseus Molecular Cloud

    Get PDF
    We present observations performed with the Green Bank Telescope at 1.4 and 5 GHz of three strips coincident with the anomalous microwave emission features previously identified in the Perseus molecular cloud at 33 GHz with the Very Small Array. With these observations we determine the level of the low frequency (~1-5 GHz) emission. We do not detect any significant extended emission in these regions and we compute conservative 3σ upper limits on the fraction of free-free emission at 33 GHz of 27%, 12%, and 18% for the three strips, indicating that the level of the emission at 1.4 and 5 GHz cannot account for the emission observed at 33 GHz. Additionally, we find that the low frequency emission is not spatially correlated with the emission observed at 33 GHz. These results indicate that the emission observed in the Perseus molecular cloud at 33 GHz, is indeed in excess over the low frequency emission, hence confirming its anomalous nature

    Spitzer characterisation of dust in an anomalous emission region: the Perseus cloud

    Get PDF
    Anomalous microwave emission is known to exist in the Perseus cloud. One of the most promising candidates to explain this excess of emission is electric dipole radiation from rapidly rotating very small dust grains, commonly referred to as spinning dust. Photometric data obtained with the Spitzer Space Telescope have been reprocessed and used in conjunction with the dust emission model DUSTEM to characterise the properties of the dust within the cloud. This analysis has allowed us to constrain spatial variations in the strength of the interstellar radiation field (χISRF\chi_\mathrm{ISRF}), the mass abundances of the PAHs and VSGs relative to the BGs (YPAH_\mathrm{PAH} and YVSG_\mathrm{VSG}), the column density of hydrogen (NH_\mathrm{H}) and the equilibrium dust temperature (Tdust_\mathrm{dust}). The parameter maps of YPAH_\mathrm{PAH}, YVSG_\mathrm{VSG} and χISRF\chi_\mathrm{ISRF} are the first of their kind to be produced for the Perseus cloud, and we used these maps to investigate the physical conditions in which anomalous emission is observed. We find that in regions of anomalous emission the strength of the ISRF, and consequently the equilibrium temperature of the dust, is enhanced while there is no significant variation in the abundances of the PAHs and the VSGs or the column density of hydrogen. We interpret these results as an indication that the enhancement in χISRF\chi_\mathrm{ISRF} might be affecting the properties of the small stochastically heated dust grains resulting in an increase in the spinning dust emission observed at 33 GHz. This is the first time that such an investigation has been performed, and we believe that this type of analysis creates a new perspective in the field of anomalous emission studies, and represents a powerful new tool for constraining spinning dust models.Comment: 13 pages, 9 figures, accepted for publication in MNRA

    Using Spinning Dust Emission To Constrain The Abundance Of Very Small Dust Grains In Dense Cores

    Get PDF
    We present the first analysis of using spinning dust emission as a method to characterise the properties of very small interstellar dust grains in dense cores

    AMI Observations of the Anomalous Microwave Emission in the Perseus Molecular Cloud

    Get PDF
    We present observations of the known anomalous microwave emission region, G159.6–18.5, in the Perseus molecular cloud at 16 GHz performed with the Arcminute Microkelvin Imager Small Array. These are the highest angular resolution observations of G159.6–18.5 at microwave wavelengths. By combining these microwave data with infrared observations between 5.8 and 160 μm from the Spitzer Space Telescope, we investigate the existence of a microwave-infrared correlation on angular scales of ~2'. We find that the overall correlation appears to increase toward shorter infrared wavelengths, which is consistent with the microwave emission being produced by electric dipole radiation from small, spinning dust grains. We also find that the microwave-infrared correlation peaks at 24 μm (6.7σ), suggesting that the microwave emission is originating from a population of stochastically heated small interstellar dust grains rather than polycyclic aromatic hydrocarbons

    Using cm observations to constrain the abundance of very small dust grains in Galactic cold cores

    Get PDF
    In this analysis, we illustrate how the relatively new emission mechanism, known as spinning dust, can be used to characterize dust grains in the interstellar medium. We demonstrate this by using spinning dust emission observations to constrain the abundance of very small dust grains (a ≲ 10 nm) in a sample of Galactic cold cores. Using the physical properties of the cores in our sample as inputs to a spinning dust model, we predict the expected level of emission at a wavelength of 1 cm for four different very small dust grain abundances, which we constrain by comparing to 1 cm CARMA observations. For all of our cores, we find a depletion of very small grains, which we suggest is due to the process of grain growth. This work represents the first time that spinning dust emission has been used to constrain the physical properties of interstellar dust grains

    The pros and cons of the inversion method approach to derive 3D dust emission properties in the ISM: the Hi-GAL field centred on (l, b) = (30°, 0°)

    Get PDF
    Herschel far-infrared continuum data obtained as part of the Hi-GAL survey have been used, together with the GLIMPSE 8 μm and MIPSGAL 24 μm data, to attempt the first 3D-decomposition of dust emission associated with atomic, molecular and ionized gas at 15 arcmin angular resolution. Our initial test case is a 2 × 2 square degrees region centred on (l, b) = (30°, 0°), a direction that encompasses the origin point of the Scutum–Crux Arm at the tip of the Galactic Bar. Coupling the IR maps with velocity maps specific for different gas phases (H i 21cm, ^(12)CO and ^(13)CO, and radio recombination lines), we estimate the properties of dust blended with each of the gas components and at different Galactocentric distances along the line of sight (LOS). A statistical Pearson's coefficients analysis is used to study the correlation between the column densities estimated for each gas component and the intensity of the IR emission. This analysis provides evidence that the 2 × 2 square degree field under consideration is characterized by the presence of a gas component not accounted for by the standard tracers, possibly associated with warm H_2 and cold H I. We demonstrate that the IR radiation in the range 8 < λ < 500 μm is systematically dominated by emission originating within the Scutum–Crux Arm. By applying an inversion method, we recover the dust emissivities associated with atomic, molecular and ionized gas. Using the DustEM model, we fit the spectral energy distributions for each gas phase, and find average dust temperatures of T_(d,H I) = 18.82 ± 0.47 K, T_(d,H_2) = 18.84 ± 1.06 K and T_(d,H II) = 22.56 ± 0.64 K, respectively. We also obtain an indication for polycyclic aromatic hydrocarbons depletion in the diffuse ionized gas. We demonstrate the importance of including the ionized component in 3D-decompositions of the total IR emission. However, the main goal of this work is to discuss the impact of the missing column density associated with the dark gas component on the accurate evaluation of the dust properties, and to shed light on the limitations of the inversion method approach when this is applied to a small section of the Galactic plane and when the working resolution allows sufficient de-blending of the gas components along the LOS
    corecore