923 research outputs found
Deformations and quasiparticle spectra of nuclei in the nobelium region
We have performed self-consistent Skyrme Hartree-Fock-Bogolyubov calculations
for nuclei close to No. Self-consistent deformations, including
as functions of the rotational frequency, were determined for
even-even nuclei Fm, No, and Rf. The
quasiparticle spectra for N=151 isotones and Z=99 isotopes were calculated and
compared with experimental data and the results of Woods-Saxon calculations. We
found that our calculations give high-order deformations similar to those
obtained for the Woods-Saxon potential, and that the experimental quasiparticle
energies are reasonably well reproduced.Comment: 6 pages, 2 figures; ICFN5 conference proceeding
Fluctuating parts of nuclear ground state correlation energies
Background: Heavy atomic nuclei are often described using the
Hartree-Fock-Bogoliubov (HFB) method. In principle, this approach takes into
account Pauli effects and pairing correlations while other correlation effects
are mimicked through the use of effective density-dependent interactions.
Purpose: Investigate the influence of higher order correlation effects on
nuclear binding energies using Skyrme's effective interaction.
Methods: A cut-off in relative momenta is introduced in order to remove
ultraviolet divergences caused by the zero-range character of the interaction.
Corrections to binding energies are then calculated using the
quasiparticle-random-phase approximation (QRPA) and second order many-body
perturbation theory (MBPT2).
Result: Contributions to the correlation energies are evaluated for several
isotopic chains and an attempt is made to disentangle which parts give rise to
fluctuations that may be difficult to incorporate on the HFB level. The
dependence of the results on the cut-off is also investigated.
Conclusions: The improved interaction allows explicit summations of
perturbation series which is useful for the description of some nuclear
observables. However, refits of the interaction parameters are needed to obtain
more quantitative results
Low-lying states in near-magic odd-odd nuclei and the effective interaction
The iterative quasi-particle-random-phase approximation (QRPA) method we
previously developed to accurately calculate properties of individual nuclear
states is extended so that it can be applied for nuclei with odd numbers of
neutrons and protons. The approach is based on the proton-neutron-QRPA (pnQRPA)
and uses an iterative non-hermitian Arnoldi diagonalization method where the
QRPA matrix does not have to be explicitly calculated and stored. The method is
used to calculate excitation energies of proton-neutron multiplets for several
nuclei. The influence of a pairing interaction in the channel is studied
Linear response strength functions with iterative Arnoldi diagonalization
We report on an implementation of a new method to calculate RPA strength
functions with iterative non-hermitian Arnoldi diagonalization method, which
does not explicitly calculate and store the RPA matrix. We discuss the
treatment of spurious modes, numerical stability, and how the method scales as
the used model space is enlarged. We perform the particle-hole RPA benchmark
calculations for double magic nucleus 132Sn and compare the resulting
electromagnetic strength functions against those obtained within the standard
RPA.Comment: 9 RevTeX pages, 11 figures, submitted to Physical Review
Solution of self-consistent equations for the N3LO nuclear energy density functional in spherical symmetry. The program HOSPHE (v1.00)
We present solution of self-consistent equations for the N3LO nuclear energy
density functional. We derive general expressions for the mean fields expressed
as differential operators depending on densities and for the densities
expressed in terms of derivatives of wave functions. These expressions are then
specified to the case of spherical symmetry. We also present the computer
program HOSPHE (v1.00), which solves the self-consistent equations by using the
expansion of single-particle wave functions on the spherical harmonic
oscillator basis.Comment: 47 LaTeX pages, 2 figures, submitted to Computer Physics
Communication
Giant Monopole Resonances and nuclear incompressibilities studied for the zero-range and separable pairing interactions
Background: Following the 2007 precise measurements of monopole strengths in
tin isotopes, there has been a continuous theoretical effort to obtain a
precise description of the experimental results. Up to now, there is no
satisfactory explanation of why the tin nuclei appear to be significantly
softer than 208Pb.
Purpose: We determine the influence of finite-range and separable pairing
interactions on monopole strength functions in semi-magic nuclei.
Methods: We employ self-consistently the Quasiparticle Random Phase
Approximation on top of spherical Hartree-Fock-Bogolyubov solutions. We use the
Arnoldi method to solve the linear-response problem with pairing.
Results: We found that the difference between centroids of Giant Monopole
Resonances measured in lead and tin (about 1 MeV) always turns out to be
overestimated by about 100%. We also found that the volume incompressibility,
obtained by adjusting the liquid-drop expression to microscopic results, is
significantly larger than the infinite-matter incompressibility.
Conclusions: The zero-range and separable pairing forces cannot induce
modifications of monopole strength functions in tin to match experimental data.Comment: 11 RevTeX pages, 16 figures, 1 table, extended versio
Collective vibrational states with fast iterative QRPA method
An iterative method we previously proposed to compute nuclear strength
functions is developed to allow it to accurately calculate properties of
individual nuclear states. The approach is based on the
quasi-particle-random-phase approximation (QRPA) and uses an iterative
non-hermitian Arnoldi diagonalization method where the QRPA matrix does not
have to be explicitly calculated and stored. The method gives substantial
advantages over conventional QRPA calculations with regards to the
computational cost. The method is used to calculate excitation energies and
decay rates of the lowest lying 2+ and 3- states in Pb, Sn, Ni and Ca isotopes
using three different Skyrme interactions and a separable gaussian pairing
force.Comment: 10 pages, 11 figure
- …
