825 research outputs found
Applications of the magneto-optical filter to stellar pulsation measurements
A proposed method of employing the Cacciani magneto-optical filter (MOF) for stellar seismology studies is described. The method relies on the fact that the separation of the filter bandpasses in the MOF can be changed by varying the level of input power to the filter cells. With the use of a simple servosystem the bandpass of a MOF can be tuned to compensate for the changes in the radial velocity of a star introduced by the orbital motion of the Earth. Such a tuned filter can then be used to record intensity fluctuations through the MOF bandpass over an extended period of time for each given star. Also, the use of a two cell version of the MOF makes it possible to alternately chop between the bandpass located in the stellar line wing and a second bandpass located in the stellar continuum. Rapid interchange between the two channels makes it possible for atmospheric-introduced noise to be removed from the time series
The 1984 solar oscillation program of the Mount Wilson 60-foot tower
The instrumentation, data, and preliminary results from the summer, 1984, solar oscillation observing program which was carried out using the 60-foot tower telescope of the Mt. Wilson Observatory are described. This program was carried out with a dedicated solar oscillation observing system and obtained full-disk Dopplergrams every 40 seconds for up to 11 hours per day. Between June and September, 1984, observations were obtained with a Na magneto-optical filter on 90 different days. The data analysis has progressed to the point that spherical harmonic filter functions were employed to generate a few one-dimensional power spectra from a single day's observations
The analysis of solar models: Neutrinos and oscillations
Tests of solar neutrino flux and solar oscillation frequencies were used to assess standard stellar structure theory. Standard and non-standard solar models are enumerated and discussed. The field of solar seismology, wherein the solar interior is studied from the measurement of solar oscillations, is introduced
Analysis of the solar cycle and core rotation using 15 years of Mark-I observations:1984-1999. I. The solar cycle
High quality observations of the low-degree acoustic modes (p-modes) exist
for almost two complete solar cycles using the solar spectrophotometer Mark-I,
located at the Observatorio del Teide (Tenerife, Spain) and operating now as
part of the Birmingham Solar Oscillations Network (BiSON). We have performed a
Fourier analysis of 30 calibrated time-series of one year duration covering a
total period of 15 years between 1984 and 1999. Applying different techniques
to the resulting power spectra, we study the signature of the solar activity
changes on the low-degree p-modes. We show that the variation of the central
frequencies and the total velocity power (TVP) changes. A new method of
simultaneous fit is developed and a special effort has been made to study the
frequency-dependence of the frequency shift. The results confirm a variation of
the central frequencies of acoustic modes of about 450 nHz, peak-to-peak, on
average for low degree modes between 2.5 and 3.7 mHz. The TVP is
anti-correlated with the common activity indices with a decrease of about 20%
between the minimum and the maximum of solar cycle 22. The results are compared
with those obtained for intermediate degrees, using the LOWL data. The
frequency shift is found to increase with the degree with a weak l-dependence
similar to that of the inverse mode mass. This verifies earlier suggestions
that near surface effects are predominant.Comment: Accepted by A&A October 3 200
Non-axisymmetric oscillations of stratified coronal magnetic loops with elliptical cross-sections
We study non-axisymmetric oscillations of a straight magnetic tube with an
elliptic cross-section and density varying along the tube. The governing
equations for kink and fluting modes in the thin tube approximation are
derived. We found that there are two kink modes, polarised along the large and
small axes of the elliptic cross-section. We have shown that the ratio of
frequencies of the first overtone and fundamental harmonic is the same for both
kink modes and independent of the ratio of the ellipse axes. On the basis of
this result we concluded that the estimates of the atmospheric scale height
obtained using simultaneous observations of the fundamental harmonic and first
overtone of the coronal loop kink oscillations are independent of the
ellipticity of the loop cross-section
Hi-C and AIA observations of transverse magnetohydrodynamic waves in active regions
The recent launch of the High resolution Coronal imager (Hi-C) provided a unique opportunity of studying the EUV corona with unprecedented spatial resolution. We utilize these observations to investigate the properties of low-frequency (50−200 s) active region transverse waves, whose omnipresence had been suggested previously. The five-fold improvement in spatial resolution over SDO/AIA reveals coronal loops with widths 150−310 km and that these loops support transverse waves with displacement amplitudes <50 km. However, the results suggest that wave activity in the coronal loops is of low energy, with typical velocity amplitudes <3 km s-1. An extended time-series of SDO data suggests that low-energy wave behaviour is typical of the coronal structures both before and after the Hi-C observations
Brewing of filter coffee
We report progress on mathematical modelling of coffee grounds in a drip filter coffee machine. The report focuses on the evolution of the shape of the bed of coffee grounds during extraction with some work also carried out on the chemistry of extraction. This work was sponsored by Philips who are interested in understanding an observed correlation between the final shape of the coffee grounds and the quality of the coffee. We used experimental data gathered by Philips and ourselves to identify regimes in the coffee brewing process and relevant regions of parameter space. Our work makes it clear that a number of separate processes define the shape of the coffee bed depending on the values of the parameters involved e.g. the size of the grains and the speed of fluid flow during extraction. We began work on constructing mathematical models of the redistribution of the coffee grounds specialised to each region and on a model of extraction. A variety of analytic and numerical tools were used. Furthermore our research has progressed far enough to allow us to begin to exploit connections between this problem and other areas of science, in particular the areas of sedimentology and geomorphology, where the processes we have observed in coffee brewing have been studied
Selective spatial damping of propagating kink wavesto resonant absorption
There is observational evidence of propagating kink waves driven by photospheric motions. These disturbances, interpreted as kink magnetohydrodynamic (MHD) waves are attenuated as they propagate upwards in the solar corona. In this paper we show that resonant absorption provides a simple explanation to the spatial damping of these waves. Kink MHD waves are studied using a cylindrical model of solar magnetic flux tubes which includes a non-uniform layer at the tube boundary. Assuming that the frequency is real and the longitudinal wavenumber complex, the damping length and damping per wavelength produced by resonant absorption are analytically calculated. The damping length of propagating kink waves due resonant absorption is a monotonically decreasing function of frequency. For kink waves with low frequencies the damping length is exactly inversely proportional to frequency and we denote this as the TGV relation. When moving to high frequencies the TGV relation continues to be an exceptionally good approximation of the actual dependency of the damping length on frequency. This dependency means that resonant absorption is selective as it favours low frequency waves and can efficiently remove high frequency waves from a broad band spectrum of kink waves. It is selective as the damping length is inversely proportional to frequency so that the damping becomes more severe with increasing frequency. This means that radial inhomogeneity can cause solar waveguides to be a natural low-pass filter for broadband disturbances. Hence kink wave trains travelling along, e.g., coronal loops, will have a greater proportion of the high frequency components dissipated lower down in the atmosphere. This could have important consequences with respect to the spatial distribution of wave heating in the solar atmospher
Recommended from our members
Implementation research for the prevention of antimicrobial resistance and healthcare-associated infections; 2017 Geneva infection prevention and control (IPC)-think tank (part 1)
Background
Around 5–15% of all hospital patients worldwide suffer from healthcare-associated infections (HAIs), and years of excessive antimicrobial use in human and animal medicine have created emerging antimicrobial resistance (AMR). A considerable amount of evidence-based measures have been published to address these challenges, but the largest challenge seems to be their implementation.
Methods
In June 2017, a total of 42 experts convened at the Geneva IPC-Think Tank to discuss four domains in implementation science: 1) teaching implementation skills; 2) fostering implementation of IPC and antimicrobial stewardship (AMS) by policy making; 3) national/international actions to foster implementation skills; and 4) translational research bridging social sciences and clinical research in infection prevention and control (IPC) and AMR.
Results
Although neglected in the past, implementation skills have become a priority in IPC and AMS. They should now be part of any curriculum in health care, and IPC career paths should be created. Guidelines and policies should be aligned with each other and evidence-based, each document providing a section on implementing elements of IPC and AMS in patient care. International organisations should be advocates for IPC and AMS, framing them as patient safety issues and emphasizing the importance of implementation skills. Healthcare authorities at the national level should adopt a similar approach and provide legal frameworks, guidelines, and resources to allow better implementation of patient safety measures in IPC and AMS. Rather than repeating effectiveness studies in every setting, we should invest in methods to improve the implementation of evidence-based measures in different healthcare contexts. For this, we need to encourage and financially support collaborations between social sciences and clinical IPC research.
Conclusions
Experts of the 2017 Geneva Think Tank on IPC and AMS, CDC, and WHO agreed that sustained efforts on implementation of IPC and AMS strategies are required at international, country, and hospital management levels, to provide an adequate multimodal framework that addresses (not exclusively) leadership, resources, education and training for implementing IPC and AMS. Future strategies can build on this agreement to make strategies on IPC and AMS more effective
Recent Advances in Chromospheric and Coronal Polarization Diagnostics
I review some recent advances in methods to diagnose polarized radiation with
which we may hope to explore the magnetism of the solar chromosphere and
corona. These methods are based on the remarkable signatures that the
radiatively induced quantum coherences produce in the emergent spectral line
polarization and on the joint action of the Hanle and Zeeman effects. Some
applications to spicules, prominences, active region filaments, emerging flux
regions and the quiet chromosphere are discussed.Comment: Review paper to appear in "Magnetic Coupling between the Interior and
the Atmosphere of the Sun", eds. S. S. Hasan and R. J. Rutten, Astrophysics
and Space Science Proceedings, Springer-Verlag, 200
- …
