555 research outputs found

    Molecular line probes of activity in galaxies

    Full text link
    The use of specific tracers of the dense molecular gas phase can help to explore the feedback of activity on the interstellar medium (ISM) in galaxies. This information is a key to any quantitative assessment of the efficiency of the star formation process in galaxies. We present the results of a survey devoted to probe the feedback of activity through the study of the excitation and chemistry of the dense molecular gas in a sample of local universe starbursts and active galactic nuclei (AGNs). Our sample includes also 17 luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs). From the analysis of the LIRGs/ULIRGs subsample, published in Gracia-Carpio et al.(2007) we find the first clear observational evidence that the star formation efficiency of the dense gas, measured by the L_FIR/L_HCN ratio, is significantly higher in LIRGs and ULIRGs than in normal galaxies. Mounting evidence of overabundant HCN in active environments would even reinforce the reported trend, pointing to a significant turn upward in the Kennicutt-Schmidt law around L_FIR=10^11 L_sun. This result has major implications for the use of HCN as a tracer of the dense gas in local and high-redshift luminous infrared galaxies.Comment: 4 pages, 2 figures, contributed paper to Far-Infrared Workshop 07 (FIR 2007

    Modelling the Molecular Gas in NGC 6240

    Full text link
    We present the first observations of H13^{13}CN(10)(1-0), H13^{13}CO+(10)^+(1-0) and SiO(21)(2-1) in NGC\,6240, obtained with the IRAM PdBI. Combining a Markov Chain Monte Carlo (MCMC) code with Large Velocity Gradient (LVG) modelling, and with additional data from the literature, we simultaneously fit three gas phases and six molecular species to constrain the physical condition of the molecular gas, including mass-luminosity conversion factors. We find 1010M\sim10^{10}M_\odot of dense molecular gas in cold, dense clouds (Tk10T_{\rm k}\sim10\,K, nH2106n_{{\rm H}_2}\sim10^6\,cm3^{-3}) with a volume filling factor <0.002<0.002, embedded in a shock heated molecular medium (Tk2000T_{\rm k}\sim2000\,K, nH2103.6n_{{\rm H}_2}\sim10^{3.6}\,cm3^{-3}), both surrounded by an extended diffuse phase (Tk200T_{\rm k}\sim200\,K, nH2102.5n_{{\rm H}_2}\sim10^{2.5}\,cm3^{-3}). We derive a global αCO=1.51.17.1\alpha_{\rm CO}=1.5^{7.1}_{1.1} with gas masses log10(M/[M])=10.110.010.8\log_{10}\left(M / [M_\odot]\right)=10.1_{10.0}^{10.8}, dominated by the dense gas. We also find αHCN=321389\alpha_{\rm HCN} = 32^{89}_{13}, which traces the cold, dense gas. The [12^{12}C]/[13^{13}C] ratio is only slightly elevated (986523098^{230}_{65}), contrary to the very high [CO]/[13^{13}CO] ratio (300-500) reported in the literature. However, we find very high [HCN]/[H13^{13}CN] and [HCO+^+]/[H13^{13}CO+^+] abundance ratios (300200500)(300^{500}_{200}) which we attribute to isotope fractionation in the cold, dense clouds.Comment: 27 pages, 17 figures, 9 tables. Accepted in Ap

    Detection of CO+ in the nucleus of M82

    Full text link
    We present the detection of the reactive ion CO+ towards the prototypical starburst galaxy M82. This is the first secure detection of this short-lived ion in an external galaxy. Values of [CO+]/[HCO+]>0.04 are measured across the inner 650pc of the nuclear disk of M82. Such high values of the [CO+]/[HCO+] ratio had only been previously measured towards the atomic peak in the reflection nebula NGC7023. This detection corroborates that the molecular gas reservoir in the M82 disk is heavily affected by the UV radiation from the recently formed stars. Comparing the column densities measured in M82 with those found in prototypical Galactic photon-dominated regions (PDRs), we need \~20 clouds along the line of sight to explain our observations. We have completed our model of the molecular gas chemistry in the M82 nucleus. Our PDR chemical model successfully explains the [CO+]/[HCO+] ratios measured in the M~82 nucleus but fails by one order of magnitude to explain the large measured CO+ column densities (~1--4x10^{13} cm^{-2}). We explore possible routes to reconcile the chemical model and the observations.Comment: 12 pages, 2 figure

    Chemically Distinct Nuclei and Outflowing Shocked Molecular Gas in Arp 220

    Get PDF
    We present the results of interferometric spectral line observations of Arp 220 at 3.5mm and 1.2mm from the Plateau de Bure Interferometer (PdBI), imaging the two nuclear disks in H13^{13}CN(10)(1 - 0) and (32)(3 - 2), H13^{13}CO+(10)^+(1 - 0) and (32)(3 - 2), and HN13^{13}C(32)(3 - 2) as well as SiO(21)(2 - 1) and (65)(6 - 5), HC15^{15}N(32)(3 - 2), and SO(6655)(6_6 - 5_5). The gas traced by SiO(65)(6 - 5) has a complex and extended kinematic signature including a prominent P Cygni profile, almost identical to previous observations of HCO+(32)^+(3 - 2). Spatial offsets 0.10.1'' north and south of the continuum centre in the emission and absorption of the SiO(65)(6 - 5) P Cygni profile in the western nucleus (WN) imply a bipolar outflow, delineating the northern and southern edges of its disk and suggesting a disk radius of 40\sim40 pc, consistent with that found by ALMA observations of Arp 220. We address the blending of SiO(65)(6 - 5) and H13^{13}CO+(32)^+(3 - 2) by considering two limiting cases with regards to the H13^{13}CO+^+ emission throughout our analysis. Large velocity gradient (LVG) modelling is used to constrain the physical conditions of the gas and to infer abundance ratios in the two nuclei. Our most conservative lower limit on the [H13^{13}CN]/[H13^{13}CO+^+] abundance ratio is 11 in the WN, cf. 0.10 in the eastern nucleus (EN). Comparing these ratios to the literature we argue on chemical grounds for an energetically significant AGN in the WN driving either X-ray or shock chemistry, and a dominant starburst in the EN.Comment: 28 pages, 17 figures, accepted to Ap

    The Gas Phase in a Low Metallicity ISM

    Get PDF
    Original article can be found at: http://journals.cambridge.org/ Copyright International Astronomical Union. DOI: 10.1017/S1743921308024927We present several results from our analysis of dwarf irregular galaxies culled from The HI Nearby Galaxy Survey (THINGS). We analyse the rotation curves of two galaxies based on “bulk” velocity fields, i.e. velocity maps from which random non–circular motions are removed. We confirm that their dark matter distribution is best fit by an isothermal halo model. We show that the star formation properties of dIrr galaxies resemble those of the outer parts of larger, spiral systems. Lastly, we study the large scale (3–D) distribution of the gas, and argue that the gas disk in dIrrs is thick, both in a relative, as well as in an absolute sense as compared to spirals. Massive star formation through subsequent supernova explosions is able to redistribute the bulk of the ISM, creating large cavities. These cavities are often larger, and longer–lived than in spiral galaxies.Peer reviewe

    Model for interoperability evaluation in e-government services

    Get PDF
    proceedings of IV International Conference on Multimedia and Information & Communication Technologies in Education, m-ICTE2006, Sevilla, Spain, November 22-25, 2006The recent publication of the European and Spanish interoperability frameworks implies that public organizations should start a change management process in order to adapt their technologies and procedures to the new standard as a way to guarantee information interoperability across e-government services.The main justification for this research is to disseminate the interoperability standards among Spanish public organizations and to provide methodological and technical guidelines to facilitate the adaptation process, and to foster the usage of new techniques and procedures for information integration and management. The aim of the research consists of identifying the essential aspects to take into consideration to guarantee the information and knowledge interoperability in e-government services. In this context good practices in information interoperability are taken into account and three basic approaches are identified: (1)Information and knowledge management: mark-up languages, open software and formats, and electronic document processing; (2) Metadata for knowledge representation in electronic resources; and (3) Web accessibility to improve access for all.Publicad

    A Model for the Onset of Self-gravitation and Star Formation in Molecular Gas Governed by Galactic Forces: I. Cloud-scale Gas Motions

    Get PDF
    Modern extragalactic molecular gas surveys now reach the scales of star-forming giant molecular clouds (GMCs, 20-50 pc). Systematic variations in GMC properties with galaxy environment imply that clouds are not universally self-gravitating objects, decoupled from their surroundings. Here we reexamine the coupling of clouds to their environment and develop a model for 3D gas motions generated by forces arising with the galaxy gravitational potential defined by the background disk of stars and dark matter. We show that these motions can resemble or even exceed the motions needed to support gas against its own self-gravity throughout typical galaxy disks. The importance of the galactic potential in spiral arms and galaxy centers suggests that the response to self-gravity does not always dominate the motions of gas at GMC scales, with implications for observed gas kinematics, virial equilibrium and cloud morphology. We describe how a uniform treatment of gas motions in the plane and in the vertical direction synthesizes the two main mechanisms proposed to regulate star formation: vertical pressure equilibrium and shear/Coriolis forces as parameterized by Toomre Q~1. As the modeled motions are coherent and continually driven by the external potential, they represent support for the gas that is distinct from that conventionally attributed to turbulence, which decays rapidly and requires thus maintenance, e.g. via feedback from star formation. Thus our model suggests the galaxy itself can impose an important limit to star formation, as we explore in a second paper in this series.Comment: Accepted for publication in ApJ, 26 pages, 11 figure

    High-resolution imaging of the molecular outflows in two mergers: IRAS17208-0014 and NGC1614

    Get PDF
    Galaxy evolution scenarios predict that the feedback of star formation and nuclear activity (AGN) can drive the transformation of gas-rich spiral mergers into ULIRGs, and, eventually, lead to the build-up of QSO/elliptical hosts. We study the role that star formation and AGN feedback have in launching and maintaining the molecular outflows in two starburst-dominated advanced mergers, NGC1614 and IRAS17208-0014, by analyzing the distribution and kinematics of their molecular gas reservoirs. We have used the PdBI array to image with high spatial resolution (0.5"-1.2") the CO(1-0) and CO(2-1) line emissions in NGC1614 and IRAS17208-0014, respectively. The velocity fields of the gas are analyzed and modeled to find the evidence of molecular outflows in these sources and characterize the mass, momentum and energy of these components. While most (>95%) of the CO emission stems from spatially-resolved (~2-3kpc-diameter) rotating disks, we also detect in both mergers the emission from high-velocity line wings that extend up to +-500-700km/s, well beyond the estimated virial range associated with rotation and turbulence. The kinematic major axis of the line wing emission is tilted by ~90deg in NGC1614 and by ~180deg in IRAS17208-0014 relative to their respective rotating disk major axes. These results can be explained by the existence of non-coplanar molecular outflows in both systems. In stark contrast with NGC1614, where star formation alone can drive its molecular outflow, the mass, energy and momentum budget requirements of the molecular outflow in IRAS17208-0014 can be best accounted for by the existence of a so far undetected (hidden) AGN of L_AGN~7x10^11 L_sun. The geometry of the molecular outflow in IRAS17208-0014 suggests that the outflow is launched by a non-coplanar disk that may be associated with a buried AGN in the western nucleus.Comment: Final version in press, accepted by A&A. Reference list updated. Minor typos correcte

    The influence of cosmic rays in the circumnuclear molecular gas of NGC1068

    Full text link
    We surveyed the circumnuclear disk of the Seyfert galaxy NGC1068 between the frequencies 86.2 GHz and 115.6 GHz, and identified 17 different molecules. Using a time and depth dependent chemical model we reproduced the observational results, and show that the column densities of most of the species are better reproduced if the molecular gas is heavily pervaded by a high cosmic ray ionization rate of about 1000 times that of the Milky Way. We discuss how molecules in the NGC1068 nucleus may be influenced by this external radiation, as well as by UV radiation fields.Comment: 6 pages. Conference proceeding for the workshop on "Cosmic-ray induced phenomenology in star-forming environments" held in Sant Cugat, Spain, on April 16-19, 201

    The EMPIRE Survey: Systematic Variations in the Dense Gas Fraction and Star Formation Efficiency from Full-Disk Mapping of M51

    Full text link
    We present the first results from the EMPIRE survey, an IRAM large program that is mapping tracers of high density molecular gas across the disks of nine nearby star-forming galaxies. Here, we present new maps of the 3-mm transitions of HCN, HCO+, and HNC across the whole disk of our pilot target, M51. As expected, dense gas correlates with tracers of recent star formation, filling the "luminosity gap" between Galactic cores and whole galaxies. In detail, we show that both the fraction of gas that is dense, f_dense traced by HCN/CO, and the rate at which dense gas forms stars, SFE_dense traced by IR/HCN, depend on environment in the galaxy. The sense of the dependence is that high surface density, high molecular gas fraction regions of the galaxy show high dense gas fractions and low dense gas star formation efficiencies. This agrees with recent results for individual pointings by Usero et al. 2015 but using unbiased whole-galaxy maps. It also agrees qualitatively with the behavior observed contrasting our own Solar Neighborhood with the central regions of the Milky Way. The sense of the trends can be explained if the dense gas fraction tracks interstellar pressure but star formation occurs only in regions of high density contrast.Comment: 7 pages, 5 figures, ApJL accepte
    corecore