480 research outputs found

    Design of Ge/SiGe quantum-confined Stark effect electroabsorption heterostructures for CMOS compatible photonics

    Get PDF
    We describe a combined 6×6 k.p and one-band effective mass modelling tool to calculate absorption spectra in Ge–SiGe multiple quantum well (MQW) heterostructures. We find good agreement with experimentally measured absorption spectra of Ge–SiGe MQW structures described previously in the literature, proving its predictive capability, and the simulation tool is used for the analysis and design of electroabsorption modulators. We employ strain-engineering in Ge–SiGe MQW systems to design structures for modulation at 1310 nm and 1550 nm

    Intersubband carrier scattering in n- and p-Si/SiGe quantum wells with diffuse interfaces

    Get PDF
    Scattering rate calculations in two-dimensional Si/Si1−xGex systems have typically been restricted to rectangular Ge profiles at interfaces between layers. Real interfaces however, may exhibit diffuse Ge profiles either by design or as a limitation of the growth process. It is shown here that alloy disorder scattering dramatically increases with Ge interdiffusion in (100) and (111) n-type quantum wells, but remains almost constant in (100) p-type heterostructures. It is also shown that smoothing of the confining potential leads to large changes in subband energies and scattering rates and a method is presented for calculating growth process tolerances

    Growth variation effects in SiGe-based quantum cascade lasers

    Get PDF
    Epitaxial growth of SiGe quantum cascade (QC) lasers has thus far proved difficult, and nonabrupt Ge profiles are known to exist. We model the resulting barrier degradation by simulating annealing in pairs of quantum wells (QWs). Using a semiclassical charge transport model, we calculate the changes in scattering rates and transition energy between the lowest pair of subbands. We compare results for each of the possible material configurations for SiGe QC lasers. The effects are most severe in n-type (001) Si-rich systems due to the large effective electron mass, and in p-type systems due to the coexistence of light holes and heavy holes. The lower effective mass and conduction band offset of (111) oriented systems minimizes the transition energy variation, and a large interdiffusion length (Ld = 1.49 nm) is tolerated with respect to the scattering rate. Ge-rich systems are shown to give the best tolerance with respect to subband separation (Ld = 3.31 nm), due also to their low effective mass

    Theory and design of quantum cascade lasers in (111) n-type Si/SiGe

    Get PDF
    Although most work towards the realization of group IV quantum cascade lasers (QCLs) has focused on valence band transitions, there are many desirable properties associated with the conduction band. We show that the commonly cited shortcomings of n-type Si/SiGe heterostructures can be overcome by moving to the (111) growth direction. Specifically, a large band offset and low effective mass are achievable and subband degeneracy is preserved. We predict net gain up to lattice temperatures of 90 K in a bound-to-continuum QCL with a double-metal waveguide, and show that a Ge interdiffusion length of at least 8 Å across interfaces is tolerable

    A scattering rate approach to the understanding of absorption line broadening in near-infrared AlGaN/GaN quantum wells

    No full text
    There has been much interest in the advancement of III-Nitride growth technology to fabricate AlGaN/GaN heterostructures for intersubband transitions (ISBTs). The large conduction band offset in these structures (up to 2 eV) allows transition energies in the near- to the far-infrared region, which have applications from telecommunications, such as in all-optical switches, to infra-red detectors for sensing and imaging. To date, ISBT electroluminescence has been elusive and absorption measurements remain an important method to verify band structure calculations. The growth quality can be inferred from the absorption spectrum, which will have line broadening with contributions that are both inhomogeneous (large-scale interface roughness, and non-parabolicity) and homogeneous (electron scattering related lifetime broadening). In the present work we calculated the contributions of various homogeneous broadening mechanisms (electron interaction with longitudinal-optical (LO) phonons, acoustic phonons, impurities and alloy disorder) to the full linewidth, and also the contribution of band non-parabolicity, which contributes to the inhomogeneous broadening. Calculations are then compared to the measured absorption spectra of several samples

    Design and Characterization of 1.8-3.2 THz Schottky-based Harmonic Mixers

    Get PDF
    A room-temperature Schottky diode-based WM-86 (WR-0.34) harmonic mixer was developed to build high-resolution spectrometers, and multi-pixel receivers in the THz region for applications such as radio astronomy, plasma diagnostics, and remote sensing. The mixer consists of a quartz-based Local Oscillator (LO), Intermediate-Frequency (IF) circuits, and a GaAs-based beam-lead THz circuit with an integrated diode. Measurements of the harmonic mixer were performed using a 2 THz solid-state source and 2.6906 THz QCL. A conversion loss of 27 dB for the 3rd harmonic mixing and a conversion loss of 30 dB for the 4th harmonic mixing was achieved. This is the first development of a wideband WM-86 (WR-0.34) harmonic mixer with planar Schottky diode integrated on a beam-lead THz circuit that uses a lower LO harmonic factor for 1.8-3.2 THz RF frequency. Furthermore, this result represents the best Schottky-based mixer in this frequency range

    Coherent vertical electron transport and interface roughness effects in AlGaN/GaN intersubband devices

    Get PDF
    We investigate electron transport in epitaxially-grown nitride-based resonant tunneling diodes (RTDs) and superlattice sequential tunneling devices. A density-matrix model is developed, and shown to reproduce the experimentally measured features of the current–voltage curves, with its dephasing terms calculated from semi-classical scattering rates. Lifetime broadening effects are shown to have a significant influence in the experimental data. Additionally, it is shown that the interface roughness geometry has a large effect on current magnitude, peak-to-valley ratios and misalignment features; in some cases eliminating negative differential resistance entirely in RTDs. Sequential tunneling device characteristics are dominated by a parasitic current that is most likely to be caused by dislocations, however excellent agreement between the simulated and experimentally measured tunneling current magnitude and alignment bias is demonstrated. This analysis of the effects of scattering lifetimes, contact doping and growth quality on electron transport highlights critical optimization parameters for the development of III-nitride unipolar electronic and optoelectronic devices

    Detector-free gas spectroscopy, with integrated frequency monitoring, through self-mixing in a terahertz quantum-cascade laser

    Get PDF
    Terahertz-frequency quantum cascade lasers (THz QCLs) have been used as compact, yet powerful THz radiation sources in a range of gas spectroscopy techniques, including both in situ active sensing and heterodyne radiometry. However, all such approaches require external THz instrumentation (detectors or mixers) in addition to the QCL, thus raising the system complexity and cost. A partial solution has recently been demonstrated, based on self-mixing interferometry (SMI) in a QCL, which occurs when radiation is fed back into the QCL from an external reflector. The resulting interference within the QCL perturbs the terminal voltage, and the absorption spectrum of a gas within the external cavity may be inferred from the amplitude of these perturbations. This both eliminates the need for an external THz detector or mixer, doubles the interaction-length for absorption spectroscopy, and the scanning speed can potentially be raised to the time-scale of the QCL lasing dynamics (~10 GHz). A limitation reported in the previous work is that the QCL emission frequency must be inferred from prior spectral measurements of the unperturbed laser, which introduces two principal problems: (1) additional THz instrumentation is still required, and (2) the system QCL frequency is itself perturbed by feedback effects, leading to apparent frequency shifts in the measured spectral lines. In this work, we demonstrate a technique to measure the QCL frequency directly by extending the external cavity length modulation to 400-mm using a motorised linear translation stage. By recording the QCL voltage modulation as a function of stage position, a full interferogram can be acquired, and a Fourier transform can then be used to determine the laser frequency and the amplitude of the transmitted signal. The QCL was shown to be tunable by adjusting the drive current over a 1.5-GHz bandwidth, around a centre frequency of 3.4052 THz. To demonstrate gas spectroscopy, a 1-m gas cell with TPX windows was filled with methanol vapour, and the transmitted QCL power was measured as a function of drive current through SMI analysis. Two absorption lines are clearly resolved. The technique was found to be accurate to partial methanol pressures of < 10 mTorr. In conclusion, we have demonstrated an accurate and low-cost THz gas spectroscopy technique based on self-mixing in a THz QCL, without the need for any external THz mixer or detector, or a priori calibration of the QCL emission frequency
    corecore