907 research outputs found

    Source Coding Problems with Conditionally Less Noisy Side Information

    Full text link
    A computable expression for the rate-distortion (RD) function proposed by Heegard and Berger has eluded information theory for nearly three decades. Heegard and Berger's single-letter achievability bound is well known to be optimal for \emph{physically degraded} side information; however, it is not known whether the bound is optimal for arbitrarily correlated side information (general discrete memoryless sources). In this paper, we consider a new setup in which the side information at one receiver is \emph{conditionally less noisy} than the side information at the other. The new setup includes degraded side information as a special case, and it is motivated by the literature on degraded and less noisy broadcast channels. Our key contribution is a converse proving the optimality of Heegard and Berger's achievability bound in a new setting. The converse rests upon a certain \emph{single-letterization} lemma, which we prove using an information theoretic telescoping identity {recently presented by Kramer}. We also generalise the above ideas to two different successive-refinement problems

    Fast orthogonal least squares algorithm for efficient subset model selection

    No full text
    Abstract-An efficient implementation of the orthogonal least squares algorithm for subset model selection is derived in this correspondence. Computational complexity of the algorithm is examined and the result shows that this new fast orthogonal least squares algorithm significantly reduces computational requirements. This error reduction ratio provides a criterion for forward subset selection. At the beginning of the 11th stage of the selection procedure, X has been transformed into X”’- ” = [WI... wI,- I xj,’-’)... x::;-’)] and y into y(/’-’), The 11th stage consists of i) For p 5 j 5.If, compute ii) 1

    Search for Gamma-Ray Burst Classes with the RHESSI Satellite

    Full text link
    A sample of 427 gamma-ray bursts (GRBs), measured by the RHESSI satellite, is studied statistically with respect to duration and hardness ratio. Standard statistical tests are used, such as χ2\chi^2, F-test and the maximum likelihood ratio test, in order to compare the number of GRB groups in the RHESSI database with that of the BATSE database. Previous studies based on the BATSE Catalog claim the existence of an intermediate GRB group, besides the long and short groups. Using only the GRB duration T90T_{90} as information and χ2\chi^2 or F-test, we have not found any statistically significant intermediate group in the RHESSI data. However, maximum likelihood ratio test reveals a significant intermediate group. Also using the 2-dimensional hardness / T90T_{90} plane, the maximum likelihood analysis reveals a significant intermediate group. Contrary to the BATSE database, the intermediate group in the RHESSI data-set is harder than the long one. The existence of an intermediate group follows not only from the BATSE data-set, but also from the RHESSI one.Comment: Accepted for publication in Astronomy and Astrophysics, 9 pages, 4 figure

    Impact of phonons on dephasing of individual excitons in deterministic quantum dot microlenses

    Get PDF
    Optimized light-matter coupling in semiconductor nanostructures is a key to understand their optical properties and can be enabled by advanced fabrication techniques. Using in-situ electron beam lithography combined with a low-temperature cathodoluminescence imaging, we deterministically fabricate microlenses above selected InAs quantum dots (QDs) achieving their efficient coupling to the external light field. This enables to perform four-wave mixing micro-spectroscopy of single QD excitons, revealing the exciton population and coherence dynamics. We infer the temperature dependence of the dephasing in order to address the impact of phonons on the decoherence of confined excitons. The loss of the coherence over the first picoseconds is associated with the emission of a phonon wave packet, also governing the phonon background in photoluminescence (PL) spectra. Using theory based on the independent boson model, we consistently explain the initial coherence decay, the zero-phonon line fraction, and the lineshape of the phonon-assisted PL using realistic quantum dot geometries

    Observations of the Prompt Gamma-Ray Emission of GRB 070125

    Get PDF
    The long, bright gamma-ray burst GRB 070125 was localized by the Interplanetary Network. We present light curves of the prompt gamma-ray emission as observed by Konus-WIND, RHESSI, Suzaku-WAM, and \textit{Swift}-BAT. We detail the results of joint spectral fits with Konus and RHESSI data. The burst shows moderate hard-to-soft evolution in its multi-peaked emission over a period of about one minute. The total burst fluence as observed by Konus is 1.79×1041.79 \times 10^{-4} erg/cm2^2 (20 keV--10 MeV). Using the spectroscopic redshift z=1.548z=1.548, we find that the burst is consistent with the ``Amati'' Epeak,iEisoE_{peak,i}-E_{iso} correlation. Assuming a jet opening angle derived from broadband modeling of the burst afterglow, GRB 070125 is a significant outlier to the ``Ghirlanda'' Epeak,iEγE_{peak,i}-E_\gamma correlation. Its collimation-corrected energy release Eγ=2.5×1052E_\gamma = 2.5 \times 10^{52} ergs is the largest yet observed.Comment: 25 pages, 6 figures; accepted for publication in ApJ. Improved spectral fits and energetics estimate

    Nonsolar astronomy with the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI)

    Get PDF
    The Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) is a NASA Small Explorer satellite designed to study hard x-ray and gamma-ray emission from solar flares. In addition, its high-resolution array of germanium detectors can see photons from high-energy sources throughout the Universe. Here we discuss the various algorithms necessary to extract spectra, lightcurves, and other information about cosmic gamma-ray bursts, pulsars, and other astrophysical phenomena using an unpointed, spinning array of detectors. We show some preliminary results and discuss our plans for future analyses. All RHESSI data are public, and scientists interested in participating should contact the principal author
    corecore