633 research outputs found
Solar System Experiments and the Interpretation of Saa's Model of Gravity with Propagating Torsion as a Theory with Variable Plank "Constant"
It is shown that the recently proposed interpretation of the transposed
equi-affine theory of gravity as a theory with variable Plank "constant" is
inconsistent with basic solar system gravitational experiments.Comment: 6 pages, latex, no figures. Typos correcte
Collisionless microinstabilities in stellarators II - numerical simulations
Microinstabilities exhibit a rich variety of behavior in stellarators due to
the many degrees of freedom in the magnetic geometry. It has recently been
found that certain stellarators (quasi-isodynamic ones with maximum-
geometry) are partly resilient to trapped-particle instabilities, because
fast-bouncing particles tend to extract energy from these modes near marginal
stability. In reality, stellarators are never perfectly quasi-isodynamic, and
the question thus arises whether they still benefit from enhanced stability.
Here the stability properties of Wendelstein 7-X and a more quasi-isodynamic
configuration, QIPC, are investigated numerically and compared with the
National Compact Stellarator Experiment (NCSX) and the DIII-D tokamak. In
gyrokinetic simulations, performed with the gyrokinetic code GENE in the
electrostatic and collisionless approximation, ion-temperature-gradient modes,
trapped-electron modes and mixed-type instabilities are studied. Wendelstein
7-X and QIPC exhibit significantly reduced growth rates for all simulations
that include kinetic electrons, and the latter are indeed found to be
stabilizing in the energy budget. These results suggest that imperfectly
optimized stellarators can retain most of the stabilizing properties predicted
for perfect maximum- configurations.Comment: 15 pages, 40 figure
Gyrokinetic studies of the effect of beta on drift-wave stability in NCSX
The gyrokinetic turbulence code GS2 was used to investigate the effects of
plasma beta on linear, collisionless ion temperature gradient (ITG) modes and
trapped electron modes (TEM) in National Compact Stellarator Experiment (NCSX)
geometry. Plasma beta affects stability in two ways: through the equilibrium
and through magnetic fluctuations. The first was studied here by comparing ITG
and TEM stability in two NCSX equilibria of differing beta values, revealing
that the high beta equilibrium was marginally more stable than the low beta
equilibrium in the adiabatic-electron ITG mode case. However, the high beta
case had a lower kinetic-electron ITG mode critical gradient. Electrostatic and
electromagnetic ITG and TEM mode growth rate dependencies on temperature
gradient and density gradient were qualitatively similar. The second beta
effect is demonstrated via electromagnetic ITG growth rates' dependency on
GS2's beta input parameter. A linear benchmark with gyrokinetic codes GENE and
GKV-X is also presented.Comment: Submitted to Physics of Plasmas. 9 pages, 27 figure
Conformal Black Hole Solutions of Axi-Dilaton Gravity in D-dimensions
Static, spherically symmetric solutions of axi-dilaton gravity in
dimensions is given in the Brans-Dicke frame for arbitrary values of the
Brans-Dicke constant and an axion-dilaton coupling parameter . The
mass and the dilaton and axion charges are determined and a BPS bound is
derived. There exists a one parameter family of black hole solutions in the
scale invariant limit.Comment: 6 PAGES, Rev-tex file, no figures, to appear in Phys-Rev
Simulating Gyrokinetic Microinstabilities in Stellarator Geometry with GS2
The nonlinear gyrokinetic code GS2 has been extended to treat
non-axisymmetric stellarator geometry. Electromagnetic perturbations and
multiple trapped particle regions are allowed. Here, linear, collisionless,
electrostatic simulations of the quasi-axisymmetric, three-field period
National Compact Stellarator Experiment (NCSX) design QAS3-C82 have been
successfully benchmarked against the eigenvalue code FULL. Quantitatively, the
linear stability calculations of GS2 and FULL agree to within ~10%.Comment: Submitted to Physics of Plasmas. 9 pages, 14 figure
No Scalar Hair Theorem for a Charged Spherical Black Hole
This paper consolidates noscalar hair theorem for a charged spherically
symmetric black hole in four dimension in general relativity as well as in all
scalar tensor theories, both minimally and nonminimally coupled, when the
effective Newtonian constant of gravity is positive. However, there is an
exception when the matter field itself is coupled to the scalar field, such as
in dilaton gravity.Comment: 13 pages, Latex format, some minor corrections are made, accepted for
publication in Physical Review
Dipole Perturbations of the Reissner-Nordstrom Solution: The Polar Case
The formalism developed by Chandrasekhar for the linear polar perturbations
of the Reissner-Nordstrom solution is generalized to include the case of dipole
(l=1) perturbations. Then, the perturbed metric coefficients and components of
the Maxwell tensor are computed.Comment: 16 pages, LaTeX, no figures. Submitted for publication in Physical
Review
- …
