258 research outputs found

    Existence of a phase transition under finite magnetic field in the long-range RKKY Ising spin glass Dyx_{x}Y1x_{1-x}Ru2_{2}Si2_{2}

    Full text link
    A phase transition of a model compound of the long-range Ising spin glass (SG) Dyx_{x}Y1x_{1-x}Ru2_{2}Si2_{2}, where spins interact via the RKKY interaction, has been investigated. The static and the dynamic scaling analyses reveal that the SG phase transition in the model magnet belongs to the mean-field universality class. Moreover, the characteristic relaxation time in finite magnetic fields exhibits a critical divergent behavior as well as in zero field, indicating a stability of the SG phase in finite fields. The presence of the SG phase transition in field in the model magnet strongly syggests that the replica symmetry is broken in the long-range Ising SG.Comment: 4 pages, 4 figures, to be published in JPSJ (2010

    Discomfort glare and time of day

    Get PDF
    There are strong reasons to suspect that glare sensation varies with time of the day. This study was designed to test whether such a relationship exists. Thirty subjects were exposed to an artificial lighting source at four times of the day. The source luminance was progressively increased and subjects were required to give Glare Sensation Votes (GSVs) corresponding to the level of visual discomfort experienced. Glare indices were calculated for every reported GSV, and results were statistically analysed. The findings indicated a tendency towards greater tolerance to luminance increases in artificial lighting as the day progresses. This trend was found not to be statistically related to the possible confounding variable of learning, providing evidence of an effect of time of the day on glare sensation

    Search for lepton flavor violating decays of a heavy neutral particle in p(p)over-bar collisions at root s=1.8 TeV

    Get PDF
    We report on a search for a high mass, narrow width particle that decays directly to emu, etau, or mutau. We use approximately 110 pb(-1) of data collected with the Collider Detector at Fermilab from 1992 to 1995. No evidence of lepton flavor violating decays is found. Limits are set on the production and decay of sneutrinos with R-parity violating interactions

    2-Aminophenoxazine-3-one and 2-amino-4,4α-dihydro-4α,7-dimethyl-3H-phenoxazine-3-one cause cellular apoptosis by reducing higher intracellular pH in cancer cells

    Get PDF
    We examined intracellular pH (pHi) of ten cancer cell lines derived from different organs and two normal cell lines including human embryonic lung fibroblast cells (HEL) and human umbilical vein endothelial cells (HUVEC) in vitro, and found that pHi of most of these cancer cells was evidently higher (pH 7.5 to 7.7) than that of normal cells (7.32 and 7.44 for HEL and HUVEC, respectively) and that of primary leukemic cells and erythrocytes hitherto reported (≤7.2). Higher pHi in these cancer cells could be related to the Warburg effect in cancer cells with enhanced glycolytic metabolism. Since reversal of the Warburg effect may perturb intracellular homeostasis in cancer cells, we looked for compounds that cause extensive reduction of pHi, a major regulator of the glycolytic pathway and its associated metabolic pathway. We found that phenoxazine compounds, 2-aminophenoxazine-3-one (Phx-3) and 2-amino-4,4α-dihydro-4α,7-dimethyl-3H-phenoxazine-3-one (Phx-1) caused a rapid and drastic dose-dependent decrease of pHi in ten different cancer cells within 30 min, though the extent of the decrease of pHi was significantly larger for Phx-3 (ΔpHi = 0.6 pH units or more for 100 µM Phx-3) than for Phx-1 (ΔpHi = 0.1 pH units or more for 100 µM Phx-1). This rapid and drastic decrease of pHi in a variety of cancer cells caused by Phx-3 and Phx-1 possibly perturbed their intracellular homeostasis, and extensively affected the subsequent cell death, because these phenoxazines exerted dose-dependent proapoptotic and cytotoxic effects on these cells during 72 h incubation, confirming a causal relationship between ΔpHi and cytotoxic effects due to Phx-3 and Phx-1. Phx-3 and Phx-1 also reduced pHi of normal cells including HEL and HUVEC, although they exerted less proapoptotic and cytotoxic effects on these cells than on cancer cells. Drugs such as Phx-3 and Phx-1 that reduce pHi and thereby induce cellular apoptosis might serve as benevolent anticancer drugs
    corecore