12,925 research outputs found
Surface electrical properties experiment. Part 2: Theory of radio-frequency interferometry in geophysical subsurface probing
The radiation fields due to a horizontal electric dipole laid on the surface of a stratified medium were calculated using a geometrical optics approximation, a modal approach, and direct numerical integration. The solutions were obtained from the reflection coefficient formulation and written in integral forms. The calculated interference patterns are compared in terms of the usefulness of the methods used to obtain them. Scattering effects are also discussed and all numerical results for anisotropic and isotropic cases are presented
Tm3+/Ho3+ codoped tellurite fiber laser
Continuous-wave and Q-switched lasing from a Tm 3+ /Ho 3+ codoped tellurite fiber is reported. An Yb 3+ /Er 3+ -doped silica fiber laser operating at 1.6μm was used as an in-band pump source, exciting the Tm 3+ ions into the F 4 3 level. Energy is then nonradiatively transferred to the upper laser level, the I 7 5 state of Ho 3+ . The laser transition is from the I 7 5 level to the I 8 5 level, and the resulting emission is at 2.1μm . For continuous wave operation, the slope efficiency was 62% and the threshold 0.1W ; the maximum output demonstrated was 0.16W . Mechanical Q switching resulted in a pulse of 0.65μJ energy and 160ns duration at a repetition rate of 19.4kHz
Heavy Domain Wall Fermions: The RBC and UKQCD charm physics program
We review the domain wall charm physics program of the RBC and UKQCD
collaborations based on simulations including ensembles with physical pion
mass. We summarise our current set-up and present a status update on the decay
constants , , the charm quark mass, heavy-light and heavy-strange
bag parameters and the ratio .Comment: 8 pagers, 4 figures, conference proceedings for Lattice2017 submitted
to EPJ Web of Conference
Temperature determination from the lattice gas model
Determination of temperature from experimental data has become important in
searches for critical phenomena in heavy ion collisions. Widely used methods
are ratios of isotopes (which rely on chemical and thermal equilibrium),
population ratios of excited states etc. Using the lattice gas model we propose
a new observable: where is the charge multiplicity and
is the charge of the fragmenting system. We show that the reduced multiplicity
is a good measure of the average temperature of the fragmenting system.Comment: 11 pages, 2 ps file
Probing nuclear symmetry energy with the sub-threshold pion production
Within the framework of semiclassical Boltzmann-Uehling-Uhlenbeck (BUU)
transport model, we investigated the effects of symmetry energy on the
sub-threshold pion using the isospin MDI interaction with the stiff and soft
symmetry energies in the central collision of Ca + Ca at the
incident beam energies of 100, 150, 200, 250 and 300 MeV/nucleon, respectively.
We find that the ratio of of sub-threshold charged pion
production is greatly sensitive to the symmetry energy, particularly around 100
MeV/nucleon energies. Large sensitivity of sub-threshold charged pion
production to nuclear symmetry energy may reduce uncertainties of probing
nuclear symmetry energy via heavy-ion collision.Comment: 5 pages, 5 figures, typo corrections, submitted to Chinese Physics
Letter
An exploratory study of heavy domain wall fermions on the lattice
We report on an exploratory study of domain wall fermions (DWF) as a lattice
regularisation for heavy quarks. Within the framework of quenched QCD with the
tree-level improved Symanzik gauge action we identify the DWF parameters which
minimise discretisation effects. We find the corresponding effective 4
overlap operator to be exponentially local, independent of the quark mass. We
determine a maximum bare heavy quark mass of , below which the
approximate chiral symmetry and O(a)-improvement of DWF are sustained. This
threshold appears to be largely independent of the lattice spacing. Based on
these findings, we carried out a detailed scaling study for the heavy-strange
meson dispersion relation and decay constant on four ensembles with lattice
spacings in the range . We observe very mild
scaling towards the continuum limit. Our findings establish a sound basis for
heavy DWF in dynamical simulations of lattice QCD with relevance to Standard
Model phenomenology.Comment: 23 pages, 8 figure
Investigation of remote sensing techniques of measuring soil moisture
Major activities described include development and evaluation of theoretical models that describe both active and passive microwave sensing of soil moisture, the evaluation of these models for their applicability, the execution of a controlled field experiment during which passive microwave measurements were acquired to validate these models, and evaluation of previously acquired aircraft microwave measurements. The development of a root zone soil water and soil temperature profile model and the calibration and evaluation of gamma ray attenuation probes for measuring soil moisture profiles are considered. The analysis of spatial variability of soil information as related to remote sensing is discussed as well as the implementation of an instrumented field site for acquisition of soil moisture and meteorologic information for use in validating the soil water profile and soil temperature profile models
Scattering of surface plasmon polaritons by one-dimensional inhomogeneities
The scattering of surface plasmons polaritons by a one-dimensional defect of
the surface is theoretically studied, by means of both Rayleigh and modal
expansions. The considered defects are either relief perturbations or
variations in the permittivity of the metal. The dependence of transmission,
reflection and out-of-plane scattering on parameters defining the defect is
presented. We find that the radiated energy is forwardly directed (with respect
to the surface plasmon propagation) in the case of an impedance defect.
However, for relief defects, the radiated energy may be directed into backward
or forward (or both) directions, depending on the defect width.Comment: 10 pages, 5 figures, corrected typos, some minor modifications in
figures. Accepted in Phys. Rev.
On the Relationship between Resolution Enhancement and Multiphoton Absorption Rate in Quantum Lithography
The proposal of quantum lithography [Boto et al., Phys. Rev. Lett. 85, 2733
(2000)] is studied via a rigorous formalism. It is shown that, contrary to Boto
et al.'s heuristic claim, the multiphoton absorption rate of a ``NOON'' quantum
state is actually lower than that of a classical state with otherwise identical
parameters. The proof-of-concept experiment of quantum lithography [D'Angelo et
al., Phys. Rev. Lett. 87, 013602 (2001)] is also analyzed in terms of the
proposed formalism, and the experiment is shown to have a reduced multiphoton
absorption rate in order to emulate quantum lithography accurately. Finally,
quantum lithography by the use of a jointly Gaussian quantum state of light is
investigated, in order to illustrate the trade-off between resolution
enhancement and multiphoton absorption rate.Comment: 14 pages, 7 figures, submitted, v2: rewritten in response to
referees' comments, v3: rewritten and extended, v4: accepted by Physical
Review
- …
