1,853 research outputs found
Romantic Partnerships and the Dispersion of Social Ties: A Network Analysis of Relationship Status on Facebook
A crucial task in the analysis of on-line social-networking systems is to
identify important people --- those linked by strong social ties --- within an
individual's network neighborhood. Here we investigate this question for a
particular category of strong ties, those involving spouses or romantic
partners. We organize our analysis around a basic question: given all the
connections among a person's friends, can you recognize his or her romantic
partner from the network structure alone? Using data from a large sample of
Facebook users, we find that this task can be accomplished with high accuracy,
but doing so requires the development of a new measure of tie strength that we
term `dispersion' --- the extent to which two people's mutual friends are not
themselves well-connected. The results offer methods for identifying types of
structurally significant people in on-line applications, and suggest a
potential expansion of existing theories of tie strength.Comment: Proc. 17th ACM Conference on Computer Supported Cooperative Work and
Social Computing (CSCW), 201
Representations of p-brane topological charge algebras
The known extended algebras associated with p-branes are shown to be
generated as topological charge algebras of the standard p-brane actions. A
representation of the charges in terms of superspace forms is constructed. The
charges are shown to be the same in standard/extended superspace formulations
of the action.Comment: 22 pages. Typos fixed, refs added. Minor additions to comments
sectio
Remarks on Legendrian Self-Linking
The Thurston-Bennequin invariant provides one notion of self-linking for any
homologically-trivial Legendrian curve in a contact three-manifold. Here we
discuss related analytic notions of self-linking for Legendrian knots in
Euclidean space. Our definition is based upon a reformulation of the elementary
Gauss linking integral and is motivated by ideas from supersymmetric gauge
theory. We recover the Thurston-Bennequin invariant as a special case.Comment: 42 pages, many figures; v2: minor revisions, published versio
The Non-Trapping Degree of Scattering
We consider classical potential scattering. If no orbit is trapped at energy
E, the Hamiltonian dynamics defines an integer-valued topological degree. This
can be calculated explicitly and be used for symbolic dynamics of
multi-obstacle scattering.
If the potential is bounded, then in the non-trapping case the boundary of
Hill's Region is empty or homeomorphic to a sphere.
We consider classical potential scattering. If at energy E no orbit is
trapped, the Hamiltonian dynamics defines an integer-valued topological degree
deg(E) < 2. This is calculated explicitly for all potentials, and exactly the
integers < 2 are shown to occur for suitable potentials.
The non-trapping condition is restrictive in the sense that for a bounded
potential it is shown to imply that the boundary of Hill's Region in
configuration space is either empty or homeomorphic to a sphere.
However, in many situations one can decompose a potential into a sum of
non-trapping potentials with non-trivial degree and embed symbolic dynamics of
multi-obstacle scattering. This comprises a large number of earlier results,
obtained by different authors on multi-obstacle scattering.Comment: 25 pages, 1 figure Revised and enlarged version, containing more
detailed proofs and remark
Pattern equivariant functions and cohomology
The cohomology of a tiling or a point pattern has originally been defined via
the construction of the hull or the groupoid associated with the tiling or the
pattern. Here we present a construction which is more direct and therefore
easier accessible. It is based on generalizing the notion of equivariance from
lattices to point patterns of finite local complexity.Comment: 8 pages including 2 figure
Putting String/Fivebrane Duality to the Test
According to string/fivebrane duality, the Green-Schwarz factorization of the
spacetime anomaly polynomial into means that just
as is the anomaly polynomial of the string worldsheet so
should be the anomaly polynomial of the fivebrane worldvolume. To test
this idea we perform a fivebrane calculation of and find perfect
agreement with the string one--loop result.Comment: 14 pages, CERN TH-6614/92, CTP-TAMU 60/9
Representation theory of finite W algebras
In this paper we study the finitely generated algebras underlying
algebras. These so called 'finite algebras' are constructed as Poisson
reductions of Kirillov Poisson structures on simple Lie algebras. The
inequivalent reductions are labeled by the inequivalent embeddings of
into the simple Lie algebra in question. For arbitrary embeddings a coordinate
free formula for the reduced Poisson structure is derived. We also prove that
any finite algebra can be embedded into the Kirillov Poisson algebra of a
(semi)simple Lie algebra (generalized Miura map). Furthermore it is shown that
generalized finite Toda systems are reductions of a system describing a free
particle moving on a group manifold and that they have finite symmetry. In
the second part we BRST quantize the finite algebras. The BRST cohomology
is calculated using a spectral sequence (which is different from the one used
by Feigin and Frenkel). This allows us to quantize all finite algebras in
one stroke. Explicit results for and are given. In the last part
of the paper we study the representation theory of finite algebras. It is
shown, using a quantum version of the generalized Miura transformation, that
the representations of finite algebras can be constructed from the
representations of a certain Lie subalgebra of the original simple Lie algebra.
As a byproduct of this we are able to construct the Fock realizations of
arbitrary finite algebras.Comment: 62 pages, THU-92/32, ITFA-28-9
Liouville integrability of a class of integrable spin Calogero-Moser systems and exponents of simple Lie algebras
In previous work, we introduced a class of integrable spin Calogero-Moser
systems associated with the classical dynamical r-matrices with spectral
parameter, as classified by Etingof and Varchenko for simple Lie algebras. Here
the main purpose is to establish the Liouville integrability of these systems
by a uniform method
Coherent Backscattering of light in a magnetic field
This paper describes how coherent backscattering is altered by an external
magnetic field. In the theory presented, magneto-optical effects occur inside
Mie scatterers embedded in a non-magnetic medium. Unlike previous theories
based on point-like scatterers, the decrease of coherent backscattering is
obtained in leading order of the magnetic field using rigorous Mie theory. This
decrease is strongly enhanced in the proximity of resonances, which cause the
path length of the wave inside a scatterer to be increased. Also presented is a
novel analysis of the shape of the backscattering cone in a magnetic field.Comment: 27 pages, 5 figures, Revtex, to appear in Phys. Rev.
Mapping between dissipative and Hamiltonian systems
Theoretical studies of nonequilibrium systems are complicated by the lack of
a general framework. In this work we first show that a transformation
introduced by Ao recently (J. Phys. A {\bf 37}, L25 (2004)) is related to
previous works of Graham (Z. Physik B {\bf 26}, 397 (1977)) and Eyink {\it et
al.} (J. Stat. Phys. {\bf 83}, 385 (1996)), which can also be viewed as the
generalized application of the Helmholtz theorem in vector calculus. We then
show that systems described by ordinary stochastic differential equations with
white noise can be mapped to thermostated Hamiltonian systems. A steady-state
of a dissipative system corresponds to the equilibrium state of the
corresponding Hamiltonian system. These results provides a solid theoretical
ground for corresponding studies on nonequilibrium dynamics, especially on
nonequilibrium steady state. The mapping permits the application of established
techniques and results for Hamiltonian systems to dissipative non-Hamiltonian
systems, those for thermodynamic equilibrium states to nonequilibrium steady
states. We discuss several implications of the present work.Comment: 18 pages, no figure. final version for publication on J. Phys. A:
Math & Theo
- …
